ArticleOriginal scientific text
Title
On adelic Chern forms and the Bott residue formula
Authors 1
Affiliations
- Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
Bibliography
- [AB] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.
- [Be] A. A. Beilinson, Residues and adeles, Funktsional. Anal. i Prilozhen. 14 (1980), 44-45; English transl. in Functional Anal. Appl. 14 (1980), 34-35.
- [Bo1] R. Bott, Lectures on Characteristic Classes and Polarizations, Lecture Notes in Math. 279, Springer, Berlin, 1972.
- [Bo2] R. Bott, A residue formula for holomorphic vector fields, J. Differential Geom. 1 (1967), 311-330.
- [CL] J. B. Carrell and D. I. Lieberman, Vector fields and Chern numbers, Math. Ann. 225 (1977), 263-273.
- [ES] G. Ellingsrud and S. A. Strοmme, Bott's formula and enumerative geometry, preprint (1994).
- [HS] V. Hinich and V. Schechtman, Deformation theory and Lie algebra homology, preprint (1994).
- [Hr] A. Huber, On the Parshin-Beilinson Adeles for Schemes, Abh. Math. Sem. Univ. Hamburg 61 (1991), 249-273.
- [HY] R. Hübl and A. Yekutieli, Adelic Chern forms and the Bott residue formula, preprint (1994).
- [Ko] M. Kontsevich, Enumeration of rational curves via torus actions, preprint (1994).
- [Pa] A. N. Parshin, Chern class, adeles and L-functions, J. Reine Angew. Math. 341 (1983), 174-192.
- [Ye] A. Yekutieli, An Explicit Construction of the Grothendieck Residue Complex (with an appendix by P. Sastry), Astérisque 208 (1992).