PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 36 | 1 | 199-216
Tytuł artykułu

Parameter spaces for quadrics

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.
Słowa kluczowe
Rocznik
Tom
36
Numer
1
Strony
199-216
Opis fizyczny
Daty
wydano
1996
Twórcy
  • Matematisk Institut, Københavns Universitet, Universitetsparken 5, DK-2100 København Ø, Denmark
Bibliografia
  • [1] M. Brion, Groupe de Picard et nombres charactéristique des varietés sphériques, Duke Math. J. 58 (1989), 397-424.
  • [2] E. Casas-Alvero and S. Xambó-Descamps, The enumerative theory of conics after Halphen, Lecture Notes in Math. 1196, Springer-Verlag, 1986.
  • [3] C. De Concini, P. Gianni and C. Procesi, Computation of new Schubert tables for quadrics and projectivities, in: Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, 1985, 515-523.
  • [4] C. De Concini and C. Procesi, Complete symmetric varieties, in: Invariant Theory (F. Gherardelli, ed.), Lecture Notes in Math. 996, Springer-Verlag, Berlin, 1983, 1-44.
  • [5] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), Band 2, Springer-Verlag, Berlin, 1984.
  • [6] G. Z. Giambelli, Il problema della correlazione negli iperspazi, Memorie Reale Istituto Lombardo 19 (1903), 155-194.
  • [7] G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162.
  • [8] S. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in: Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math. 28, 1976, 445-482.
  • [9] S. Kleiman, Chasles's enumerative theory of conics: A historical introduction, in: Studies in Algebraic Geometry (A. Seidenberg, ed.), MAA Stud. Math. 20, 1980, 117-138.
  • [10] S. Kleiman and A. Thorup, Intersection theory and enumerative geometry. A decade in review, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 332-338.
  • [11] D. Laksov, Notes on the evolution of complete correlations, in: Enumerative and Classical Algebraic Geometry, Proceedings Nice 1981 (Le Barz and Hervier, eds.), Progr. Math. 24, Birkhäuser, 1982, 107-132.
  • [12] D. Laksov, Completed quadrics and linear maps, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 371-387.
  • [13] D. Laksov, Complete linear maps, Ark. Mat. 26 (1988), 231-263.
  • [14] D. Laksov, A. Lascoux, and A. Thorup, On Giambelli's theorem on complete correlations, Acta Math. 162 (1989), 143-199.
  • [15] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), 413-454.
  • [16] C. Procesi and S. Xambó-Descamps, On Halphen's first formula, in: Enumerative Algebraic Geometry, Copenhagen, 1989 (S. L. Kleiman and A. Thorup, eds.), Contemp. Math. 123 (1991), 199-211.
  • [17] H. Schubert, Anzahlbestimmungen für lineare Räume beliebiger Dimension, Acta Math. 8 (1886), 97-118.
  • [18] H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen, Math. Ann. 45 (1894), 153-206.
  • [19] H. Schubert, Correlative Verwandtschaft in n Dimensionen, Jahresber. Deutsch. Math.-Verein. 4 (1894/95), 158-160.
  • [20] A. Thorup, Counting quadrics, under preparation.
  • [21] A. Thorup and S. Kleiman, Complete bilinear forms, in: Algebraic Geometry, Sundance, 1986 (A. Holme and R. Speiser, eds.), Lecture Notes in Math. 1311, Springer-Verlag, Berlin, 1988, 253-320.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.