ArticleOriginal scientific text
Title
Elementary introduction to representable functors and Hilbert schemes
Authors 1
Affiliations
- Mathematical Institute, University of Bergen, Allégt. 55, N-5007 Bergen, Norway
Abstract
The purpose of this paper is to define and prove the existence of the Hilbert scheme. This was originally done by Grothendieck in [4]. A simplified proof was given by Mumford [11], and we will basically follow that proof, with small modifications.
Bibliography
- [Baye] D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard University, May 1982.
- [Gotz] G. Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), 61-70.
- [Gree] M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, in: Algebraic curves and projective geometry, Proceedings, Trento 1988, Lecture Notes in Math. 1389, Springer, Berlin, 1988.
- [Grot-1] A. Grothendieck, Techniques de construction et théorémes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 221, 1960/61.
- [Hart-2] R. Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 261-309.
- [AG] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, Berlin, Tokyo, New York, 1977.
- [Klei-2] S. L. Kleiman, Geometry of grassmannians and applications to splitting bundles and smoothing cycles, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 281-297, volume dedicated to Oscar Zariski.
- [Laud] O. A. Laudal, Formal Moduli of Algebraic Structures, Lecture Notes in Math. 754 Springer, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1979.
- [Mori] S. Mori, Projective manifolds with ample tangent bundles. Ann. of Math. (2) 110 (1979), 593-606.
- [Mumf-3] D. Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648.
- [Mumf-1] D. Mumford, Lectures on Curves on an Algebraic Surface, Studies in Mathematics 59, Princeton University Press, 1968.
- [Red] D. Mumford, The red book of varieties and schemes, Lecture Notes in Math. 1358, Springer, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1988.
- [Schl-1] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222.