ArticleOriginal scientific text
Title
Bifurcation of stationary and heteroclinic orbits for parametrized gradient-like flows
Authors 1
Affiliations
- Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany
Bibliography
- [Ba1] T. Bartsch, On the genus of representation spheres, Comment. Math. Helv. 65 (1990), 85-95.
- [Ba2] T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Math. 1560, Springer, Berlin Heidelberg 1993.
- [Ba3] T. Bartsch, A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium, preprint, Heidelberg 1994.
- [Ba4] T. Bartsch, Bifurcation theorey for nonlinear eigenvalue problems, in preparation.
- [BaC] T. Bartsch and M. Clapp, Bifurcation theory for symmetric potential operators and the equivariant cup-length, Math. Z. 204 (1990), 341-356.
- [Be] V. Benci, A geometrical index for the group
and some applications to the study of periodic solutions of ordinary differential equations, Commun. Pure Appl. Math. 34 (1981), 393-432. - [Bö] R. Böhme, Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105-126.
- [CaS] S. E. Capell and J. L. Shaneson, Nonlinear similarity, Ann. of Math. 113 (1981), 315-355.
- [Co] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS, Regional Conf. Ser. in Math. 38, AMS Providence, R.I., 1978.
- [CZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math. 37 (1984), 207-253.
- [tD] T. tom Dieck, Transformation Groups, de Gruyter, Berlin 1987.
- [D] A. Dold, Lectures on Algebraic Topology, Grundlehren der math. Wiss. 200, Springer, Berlin Heidelberg 1980.
- [FR1] E. Fadell and P. H. Rabinowitz, Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal. 26 (1977), 48-67.
- [FR2] E. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math. 45 (1978), 139-174.
- [K] M. A. Krasnoselski, On special coverings of a finite-dimensional sphere, Dokl. Akad. Nauk SSSR 103 (1955), 966-969 (in Russian).
- [Ma] A. Marino, La biforcazione nel caso variationale, Confer. Sem. Mat. Univ. Bari 132 (1977).
- [MW] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York 1989.
- [R1] P. H. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977), 412-424.
- [R2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Regional Conf. Ser. in Math. 65, AMS, Providence, R.I., 1986.
- [Sa] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41.
- [Sp] E. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.
- [Y] C. T. Yang, On the theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujòbô and Dyson, Ann. Math. 60 (1954), 262-282.