ArticleOriginal scientific text

Title

Bifurcation of stationary and heteroclinic orbits for parametrized gradient-like flows

Authors 1

Affiliations

  1. Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

Bibliography

  1. [Ba1] T. Bartsch, On the genus of representation spheres, Comment. Math. Helv. 65 (1990), 85-95.
  2. [Ba2] T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Math. 1560, Springer, Berlin Heidelberg 1993.
  3. [Ba3] T. Bartsch, A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium, preprint, Heidelberg 1994.
  4. [Ba4] T. Bartsch, Bifurcation theorey for nonlinear eigenvalue problems, in preparation.
  5. [BaC] T. Bartsch and M. Clapp, Bifurcation theory for symmetric potential operators and the equivariant cup-length, Math. Z. 204 (1990), 341-356.
  6. [Be] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Commun. Pure Appl. Math. 34 (1981), 393-432.
  7. [Bö] R. Böhme, Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105-126.
  8. [CaS] S. E. Capell and J. L. Shaneson, Nonlinear similarity, Ann. of Math. 113 (1981), 315-355.
  9. [Co] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS, Regional Conf. Ser. in Math. 38, AMS Providence, R.I., 1978.
  10. [CZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math. 37 (1984), 207-253.
  11. [tD] T. tom Dieck, Transformation Groups, de Gruyter, Berlin 1987.
  12. [D] A. Dold, Lectures on Algebraic Topology, Grundlehren der math. Wiss. 200, Springer, Berlin Heidelberg 1980.
  13. [FR1] E. Fadell and P. H. Rabinowitz, Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal. 26 (1977), 48-67.
  14. [FR2] E. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math. 45 (1978), 139-174.
  15. [K] M. A. Krasnoselski, On special coverings of a finite-dimensional sphere, Dokl. Akad. Nauk SSSR 103 (1955), 966-969 (in Russian).
  16. [Ma] A. Marino, La biforcazione nel caso variationale, Confer. Sem. Mat. Univ. Bari 132 (1977).
  17. [MW] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York 1989.
  18. [R1] P. H. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977), 412-424.
  19. [R2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Regional Conf. Ser. in Math. 65, AMS, Providence, R.I., 1986.
  20. [Sa] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41.
  21. [Sp] E. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.
  22. [Y] C. T. Yang, On the theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujòbô and Dyson, Ann. Math. 60 (1954), 262-282.
Pages:
9-27
Main language of publication
English
Published
1996
Exact and natural sciences