ArticleOriginal scientific text

Title

Minimization problems with lack of compactness

Authors 1

Affiliations

  1. Institut de Mathématique Pure, & Appliquée, Université Catholique de Louvain, Bâtiment Sc. I, Chemin du Cyclotrone 2, B-1348 Louvain-la-Neuve, Belgium

Bibliography

  1. A. K. Ben-Naoum, C. Troestler, M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Analysis T.M.A. 26 (1996), 823-833.
  2. G. Bianchi, J. Chabrowski, A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Analysis T.M.A. 25 (1995), 41-59.
  3. H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.
  4. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
  5. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
  6. E. Lieb, Existence and uniqueness of the minimizing solutions of Choquard's nonlinear equation, Stud. Appl. Math. 57 (1977), 93-105.
  7. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Annales de l'Institut Henri Poincaré Analyse Non Linéaire 1 (1984) 105-145, 223-283.
  8. P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Revista Matematica Iberoamericana, 1 (1985) N°1, 145-201, N° 2, 45-120.
  9. M. Willem, Analyse harmonique réelle, Hermann, Paris, 1995.
  10. M. Willem, Minimax theorems, to appear.
Pages:
97-107
Main language of publication
English
Published
1996
Exact and natural sciences