ArticleOriginal scientific text

Title

On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space

Authors 1, 2, 3

Affiliations

  1. Istituto di Matematica Applicata, Facoltà di Architettura, Università di Firenze, Italy
  2. Department of Physics and Mathematics, Voronezh Pedagogical University, Russia
  3. Dipartimento di Sistemi e Informatica, Università di Firenze, via S. Marta 3, 50139 Firenze, Italy

Abstract

In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x'(t) ∈ A(t)x(t) + F(t,x_t) is an Rδ-set. Here {A(t)} is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].

Bibliography

  1. R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel-Boston-Berlin, 1992.
  2. G. Anichini, G. Conti and P. Zecca, Using solution sets for solving boundary value problems for ordinary differential equations, Nonlinear Anal., Theory, Meth. and Appl. 17 No. 5 (1991), 465-472.
  3. G. Anichini and P. Zecca, Multivalued differential equations in Banach spaces, an application to control theory, J. Optim. Theory and Appl. 21 No. 4 (1977), 477-486.
  4. Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskiĭ, Introduction to the Theory of Multivalued Maps, Voronezh Univ. Press, Voronezh, 1986 (in Russian).
  5. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1977.
  6. S. N. Chow and J. D. Schuur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133-144.
  7. L. J. Davy, Properties of the solution set of a generalized differential equation, Bull. Australian Math. Soc. 6 (1972), 379-398.
  8. F. De Blasi, Existence and stability of solutions for autonomous multivalued differential equations in Banach spaces, Rend. Acad. Naz. Lincei, Serie VII, 60 (1976), 767-774.
  9. F. De Blasi and J. Myjak, On the solution sets for differential inclusions, Bull. Pol. Acad. Sci. 33 (1985), 17-23.
  10. J. Diestel, Remarks on weak compactness in L1(μ1,X), Glasgow Math. J. 18, No. 1 (1977), 87-91.
  11. G. Dragoni, J. Macki, P. Nistri and P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Res. Notes in Math., Longman, to appear.
  12. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
  13. C. Himmelberg and F. Van Vleck, A note on the solution sets for differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625.
  14. D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), 91-97.
  15. M. I. Kamenskiĭ, P. Nistri, V. V. Obukhovskiĭ and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory and Appl. 82 No. 3 (1994), 503-517.
  16. M. Kisiliewicz, Multivalued differential equations in separable Banach spaces, J. Optim. Th. Appl. 37 (1982), 231-249.
  17. S. G. Krein, Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, 1971.
  18. J. M. Lasry and R. Robert, Acyclicité de l'ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282 (1976), 1283-1286.
  19. R. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976.
  20. A. M. Muhsinov, On differential inclusions in Banach spaces, Soviet Math. Dokl. 15 (1974), 1122-1125.
  21. P. Nistri, V. V. Obukhovskiĭ and P. Zecca, On the solvability of systems of inclusions involving noncompact operators, Trans. Amer. Math. Soc. 342, No. 2 (1994), 543-562.
  22. V. V. Obukhovskiĭ, Semilinear functional differential inclusions in a Banach space and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71-79 (1992).
  23. N. S. Papageorgiou, On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. Sancti Pauli 36, No. 1 (1987), 21-39.
  24. N. S. Papageorgiou, On the solution set of differential inclusions in Banach space, Appl. Anal. 25 (1987), 319-329.
  25. N. H. Paovel and J. Vrabie, On the solution set of differential inclusions with state constraints, Appl. Anal. 31 (1989), 279-289.
  26. R. M. Sentis, Convergence de solutions d'équations différentielles multivoques, C.R. Acad. Sci. Paris, Série A, 278 (1974), 1623-1626.
  27. A. A. Tolstonogov, On differential inclusions in Banach spaces and continuous selectors, Dokl. Akad. Nauk SSSR 244 (1979), 1088-1092.
  28. A. A. Tolstonogov, On properties of solutions of differential inclusions in Banach spaces, Dokl. Akad. Nauk SSSR 248 (1979), 42-46.
  29. A. A. Tolstonogov, On the structure of the solution set for differential inclusions in a Banach space, Math. Sbornik 46 (1983), 1-15.
  30. A. A. Tolstonogov, Differential Inclusions in a Banach Space, Nauka, Novosibirsk, 1986 (in Russian).
  31. A. A. Tolstonogov and Ya. I. Umanskiĭ, On solutions of evolution inclusions II, Sibirsk. Mat. Zh. 33, No. 4 (1992), 163-174 (in Russian).
  32. Ya. I. Umanskiĭ, On a property of solutions set of differential inclusions in a Banach space, Differ. Uravneniya 28, No. 8 (1992), 1346-1351 (in Russian).
Pages:
159-169
Main language of publication
English
Published
1996
Exact and natural sciences