ArticleOriginal scientific text
Title
Upper Semicontinuous Perturbations of m-accretive Operators and Differential Inclusions with Dissipative Right-hand Side
Authors 1
Affiliations
- Fachbereich 17 der Universität Paderborn, D-33095 Paderborn, Germany
Bibliography
- V. Barbu, Continuous perturbations of nonlinear m-accretive operators in Banach spaces, Boll. Un. Mat. Ital. (4) 6 (1972), 270-278.
- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden 1976.
- L. Barthelemy, Equivalence entre bonne solution et solution forte d'une équation d'évolution gouvernée par un opérateur s.c.s, Publ. Math. Fac. Sci. Besançon, Anal. Non Linéaire, 1985-86, 9 (1986), 3-8.
- Ph. Benilan, M. G. Crandall and A. Pazy, Nonlinear Evolution Equations in Banach Spaces. (book in preparation).
- D. Bothe, Multivalued differential equations with time-dependent constraints, Proc. of the 1. World Congress of Nonlinear Analysts (to appear).
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298.
- K. Deimling, Multivalued Differential Equations, W. De Gruyter, Berlin 1992.
- J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in
, Proc. Amer. Math. Soc. 118 (1993), 447-453. - N. Kenmochi and T. Takahashi Nonautonomous differential equations in Banach spaces, Nonlinear Analysis, 4 (1980), 1109-1121.
- Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640-665.
- K. Kobayasi, Y. Kobayashi and S. Oharu, Nonlinear evolution operators in Banach spaces, Osaka J. Math. 21 (1984), 281-310.
- N. H. Pavel, Nonlinear Evolution Operators and Semigroups. Lect. Notes Math. 1260, Springer 1987.
- M. Pierre, Perturbations localement Lipschitziennes et continues d'opérateurs m-accretifs, Proc. Amer. Math. Soc. 58 (1976), 124-128.
- J. Prüss, A characterization of uniform convexity and applications to accretive operators, Hiroshima Math. J. 11 (1981), 229-234.