ArticleOriginal scientific text

Title

A sufficient condition for the existence of multiple periodic solutions of differential inclusions

Authors 1

Affiliations

  1. Mathematisches Institut der Universität München, Theresienstraße 39, D-80333 München, Germany

Bibliography

  1. R. Bader and W. Kryszewski, Fixed-point index for compositions of set-valued maps with proximally ∞-connected values on arbitrary ANR's, Set-Valued Analysis 2 (1994), 459-480.
  2. K. Deimling, Multivalued differential equations, de Gruyter, 1992.
  3. J. Dugundji, Modified Vietoris theorems for homotopy, Fund. Math. 66 (1970), 223-235.
  4. L. Górniewicz, Topological approach to differential inclusions, in: Topological Methods in Differential Equations and Inclusions, A. Granas, M. Frigon (eds.), NATO ASI Series C 472, Kluwer Academic Publ., 1995, 129-190.
  5. L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multivalued mappings of compact ANR's, J. Math. Anal. Appl. 161 (1991), 457-473.
  6. L. Górniewicz, P. Nistri and P. Zecca, Control problems on closed subsets of n via feedback controls, Topol. Methods Nonlinear Anal., 2 (1993), 163-178.
  7. L. Górniewicz and S. Plaskacz, Periodic solutions of differential inclusions in n, Bollettino U.M.I., (7), 7-A (1993), 409-420.
  8. D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math., 64 (1969), 91-97.
  9. M. A. Krasnosel'skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Springer Verlag, 1984
  10. R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-689.
  11. S. Plaskacz, On the solution sets for differential inclusions, Bollettino U.M.I., (7), 6-A (1992), 387-394.
Pages:
129-138
Main language of publication
English
Published
1996
Exact and natural sciences