ArticleOriginal scientific text

Title

Density of heat curves in the moduli space

Authors 1, 2, 3, 3

Affiliations

  1. Technische Universität Berlin, 10623 Berlin, Germany
  2. University of Arizona, Tucson, AZ 85721, USA
  3. ETH-Zentrum, CH-8092 Zürich, Switzerland

Bibliography

  1. H. F. Baker, Abel's Theorem and the Allied Theory Including the Theory of Theta-Functions, Cambridge Univ. Press, Cambridge 1897.
  2. E. Belokolos, A. Bobenko, V. Enolskii, A. Its, V. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer-Verlag 1994.
  3. R. Bikbaev, S. Kuksin, On the parametrization of finite-gap solutions by frequency vector and wave-number vector and a theorem of I. Krichever, Lett. Math. Phys. 28 (1993), 115-122.
  4. A. I. Bobenko, Schottky uniformization and finite-gap integration, Soviet Math. Dokl. 36 (1988), 38-42.
  5. A. I. Bobenko, L. A. Bordag: Periodic multiphase solutions of Kadomtsev-Petviashvili equation, J. Phys. A 22 (1989), 1259-1274.
  6. W. Burnside, Proc. London Math. Soc. 23 (1892), 49-88.
  7. J. Feldman, H. Knörrer, E. Trubowitz, Riemann surfaces of infinite genus I, II, III. Preprints ETH Zürich (1993/1994).
  8. D. Gieseker, A Lattice Version of the KP Equation, Acta Math. 168 (1992), 219-248.
  9. I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys 32 (1977), 185-213.
  10. I. M. Krichever: Spectral theory of two dimensional periodic operators and its applications, Russian Math. Surveys 44 (1989), 145-225.
  11. I. M. Krichever, The τ-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994), 437-476.
  12. G. Springer, Introduction to Riemann surfaces, Addison-Wesley 1957.
Pages:
19-27
Main language of publication
English
Published
1995
Exact and natural sciences