Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 34 | 1 | 121-148
Tytuł artykułu

Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics

Treść / Zawartość
Warianty tytułu
Języki publikacji
We describe in this talk three methods of constructing different links with the same Jones type invariant. All three can be thought as generalizations of mutation. The first combines the satellite construction with mutation. The second uses the notion of rotant, taken from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of solvable models in statistical mechanics). We extend the Jones result and relate it to Traczyk's work on rotors of links. We also show further applications of the Jones idea, e.g. to 3-string links in the solid torus. We stress the fact that ideas coming from various areas of mathematics (and theoretical physics) has been fruitfully used in knot theory, and vice versa.
Słowa kluczowe
Opis fizyczny
  • Department of Mathematics, University of California, Berkeley, CA 94720, USA
  • [1] D. Albers, John Horton Conway, Talking a good game, Math. Horizons, Spring 1994, Published by the M.A.A.
  • [2] R. P. Anstee, J. H. Przytycki, D. Rolfsen, Knot polynomials and generalized mutation, Topology Appl., 32 (1989), 237-249.
  • [3] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982.
  • [4] N. Bourbaki, Groupes et algèbres de Lie, VI: Groupes de Coxeter et systèmes de Tits, Herman Paris, 1968.
  • [5] R. I. Brooks, C. A. B. Smith, A. H. Stone, W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312-340.
  • [6] J. H. Conway, An enumeration of knots and links, Computational problems in abstract algebra (ed. J. Leech), Pergamon Press (1969), 329-358.
  • [7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-249.
  • [8] J. Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), 295-320.
  • [9] J. Hoste, J. H. Przytycki, A survey of skein modules of 3-manifolds, in: Knots 90, De Gruyter, Berlin - New York 1992, 363-379.
  • [10] J. Hoste, J. H. Przytycki, Tangle surgeries which preserve Jones-type polynomials, Center for Pure and Applied Mathematics preprint - PAM 617, U. C. Berkeley, 1994.
  • [11] G. T. Jin, D. Rolfsen, Some remarks on rotors in link theory, Canad. Math. Bull. 34 (1991), 480-484.
  • [12] V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
  • [13] V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), 311-334.
  • [14] V. F. R. Jones, Talk given at 25th Annual Spring Topology Conference, CSU Sacramento, April 11, 1991.
  • [15] V. F. R. Jones, Commuting transfer matrices and link polynomials, Internat. J. Math. 3 (1992), 205-212.
  • [16] V. F. R. Jones, Coincident link polynomials from commuting transfer matrices, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), 137-151, World Sci. Publishing, River Edge, NJ, 1992.
  • [17] T. Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc. 97 (1986), 158-162.
  • [18] T. Kanenobu, The Homfly and the Kauffman bracket polynomials for the generalized mutant of a link, Topology Appl., to appear.
  • [19] J. Kania-Bartoszyńska, Examples of different 3-manifolds with the same invariants of Witten and Reshetikhin-Turaev, Topology 32 (1993), 47-54.
  • [20] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407.
  • [21] L-bull W. B. R. Lickorish, Polynomials for links, Bull. London Math. Soc. 20 (1988), 558-588.
  • [22] Li-1 W. B. R. Lickorish, Distinct 3-manifolds with all $SU(2)_q$ invariants the same, Proc. Amer. Math. Soc. 117 (1993), 285-292.
  • [23] W. B. R. Lickorish, A. S. Lipson, Polynomials of 2-cable-like links, Proc. Amer. Math. Soc. 100 (1987), 355-361.
  • [24] W. B. R. Lickorish, K. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141.
  • [25] J. M. Montesinos, Surgery on links and double branched covers of $S^3$, in: Knots, groups and 3-manifolds, ed. L. P. Neuwirth, Ann. Math. Studies, 84, 227-259, Princeton Univ. Press, 1975.
  • [26] M-T-1 H. R. Morton, P. Traczyk, The Jones polynomial of satellite links around mutants, in: Braids, Ed. J. S. Birman, A. Libgober, AMS Contemporary Math., 78 (1988), 587-592.
  • [27] H. R. Morton, P. Traczyk, Knots and algebras, Contribuciones Matematicas en homenaje al profesor D. Antonio Plans Sanz de Bremond, ed. E. Martin-Peinador and A. Rodez Usan, University of Zaragoza, (1990), 201-220.
  • [28] Mura J. Murakami, The parallel version of polynomial invariants of links, Osaka J. Math. 26 (1989), 1-55.
  • [29] J. H. Przytycki, Equivalence of cables of mutants of knots, Canad. J. Math. XLI (1989), 250-273.
  • [30] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991), 91-100.
  • [31] J. H. Przytycki, Manuscript of the lecture delivered at the University of Tennessee, October 18, 1991.
  • [32] J. H. Przytycki, Applications of the spectral parameter tangle of V. Jones, Abstracts Amer. Math. Soc. 12 (1991), 496-497.
  • [33] J. H. Przytycki, The spectral parameter 3-string tangle, in preparation.
  • [34] J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139.
  • [35] N. Y. Reshetikhin, V. Turaev, Invariants of three manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), 547-597.
  • [36] D. Rolfsen, The quest for a knot with trivial Jones polynomial; diagram surgery and the Temperley-Lieb algebra, in: Topics in knot theory, Ed. M. E. Bozhüyük, NATO ASI Series, Series C: Mathematical and Physical Sciences - Vol. 399, Kluwer Academic Publishers 1993, 195-210.
  • [37] D. Rolfsen, Global mutation of knots, J. Knot Theory Ramifications 3 (1994), 407-417.
  • [38] H. N. V. Temperley, E. H. Lieb, Relations between the 'percolation' and 'coloring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the 'percolation' problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280.
  • [39] P. Traczyk, A note on rotant links, preprint, 1989.
  • [40] V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553.
  • [41] V. G. Turaev, The Conway and Kauffman modules of the solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 79-89. %English translation: J. Soviet Math.
  • [42] V. G. Turaev, H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), 323-358.
  • [43] W. T. Tutte, Codichromatic graphs, J. Combin. Theory Ser. B 16 (1974), 168-174.
  • [44] O. Ya. Viro, Nonprojecting isotopies and knots with homeomorphic coverings, J. Soviet Math. 12 (1979), 86-96.
  • [45] F. Waldhausen, Über Involutionen der 3 Sphäre, Topology 8 (1969), 81-91.
  • [4] S. Yamada, An operator on regular isotopy invariants of link diagrams, Topology 28 (1989), 369-377.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.