ArticleOriginal scientific text
Title
Classification of (1,1) tensor fields and bihamiltonian structures
Authors 1
Affiliations
- Sección de Matemáticas, Facultad de Ciencias, A.P. 59, 29080 Málaga, Spain
Abstract
Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point p ∈ M there exist functions , defined around p, such that and , j = 1,...,m. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on T*M.
Keywords
(1,1) tensor field, bihamiltonian structure
Bibliography
- R. Brouzet, P. Molino et F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. 4 (3) (1993), 269-296.
- P. Cabau, J. Grifone et M. Mehdi, Existence de lois de conservation dans le cas cyclique, Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), 789-803.
- A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I, Indag. Math. 18 (1956), 338-359.
- J. Grifone and M. Mehdi, Existence of conservation laws and characterization of recursion operators for completely integrable systems, preprint, Univ. Toulouse II, 1993.
- J. Lehmann-Lejeune, Intégrabilité des G-structures définies par une 1-forme 0-déformable à valeurs dans le fibré tangent, Ann. Inst. Fourier (Grenoble) 16 (1966), 329-387.
- H. Osborn, The existence of conservation laws, I, Ann. of Math. 69 (1959), 105-118.
- H. Osborn, Les lois de conservation, Ann. Inst. Fourier (Grenoble) 14 (1964), 71-82.
- F. J. Turiel, Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris Sér. I 308 (1992), 1085-1088.
- F. J. Turiel, Classification locale simultanée de deux formes symplectiques compatibles, Manuscripta Math. 82 (1994), 349-362.