ArticleOriginal scientific text

Title

Whitney stratification of sets definable in the structure exp

Authors 1

Affiliations

  1. Department of Mathematics, University of Dalat, Dalat, Vietnam

Abstract

The aim of this paper is to prove that every subset of n definable from addition, multiplication and exponentiation admits a stratification satisfying Whitney's conditions a) and b).

Bibliography

  1. L. van den Dries, Tame topology and O-minimal structures, mimeographed notes (1991).
  2. L. van den Dries and C. Miller, The field of reals with restricted analytic functions and unrestricted exponentiation, Israel J. Math. (1991).
  3. R. M. Goresky, Triangulation of stratified objects, Proc. Amer. Math. Soc. 72 (1978), 193-200.
  4. A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991.
  5. T. L. Loi, thesis, Jagiellonian University, Kraków 1993.
  6. T. L. Loi, Analytic cell decomposition of sets definable in the structure exp, Ann. Polon. Math. 59 (1994), 255-266.
  7. T. L. Loi, On the global Łojasiewicz inequalities for the class of analytic logarithmico-exponential functions, C. R. Acad. Sci. Paris Sér. I 318 (1994), 543-548.
  8. S. Łojasiewicz, Ensembles Semi-Analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
  9. A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991.
  10. A. J. Wilkie, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991.
Pages:
401-409
Main language of publication
English
Published
1996
Exact and natural sciences