ArticleOriginal scientific text

Title

Stationary p-harmonic maps into spheres

Authors 1

Affiliations

  1. Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland

Bibliography

  1. F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1992), 417-443.
  2. R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, Cahiers Mathématiques de la Décision, preprint no. 9123, CEREMADE.
  3. R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris 309 (1989), 945-949.
  4. L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113.
  5. C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 585-587.
  6. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
  7. M. Fuchs, The blow-up of p-harmonic maps, Manuscripta Math., to appear.
  8. M. Fuchs, Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis 9 (1989), 127-143.
  9. M. Fuchs, p-harmonic obstacle problems. I: Partial regularity theory, Ann. Mat. Pura Appl. 156 (1990), 127-158.
  10. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Elsevier, 1985.
  11. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983.
  12. R. Hardt and F. H. Lin, Mappings minimizing the Lp-norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555-588.
  13. F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris 311 (1990), 519-524.
  14. F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, ibid. 312 (1991), 591-596.
  15. F. Hélein, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math. 70 (1991), 203-218.
  16. S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 346-367.
  17. S. Müller, Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math. 412 (1990), 20-34.
  18. P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983), 131-166.
  19. T. Rivière, Everywhere discontinuous harmonic maps from the dimension 3 into spheres, Centre des Mathématiques et Leurs Applications, ENS-Cachan, preprint no. 9302.
  20. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335.
  21. P. Strzelecki, Regularity of p-harmonic maps from the p-dimensional ball into a sphere, Manuscripta Math., to appear.
  22. H. Takeuchi, Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps, J. Math. Soc. Japan 46 (1994), 217-234.
  23. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
  24. A. Torchinsky, Real-Variable Methods in Analysis, Academic Press, 1986.
  25. T. Toro and Ch. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1995), 87-114.
  26. K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240.
  27. N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184-222.
  28. W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, 1989.
Pages:
383-393
Main language of publication
English
Published
1996
Exact and natural sciences