ArticleOriginal scientific text

Title

Time minimal synthesis with target of codimension one under generic conditions

Authors 1, 1

Affiliations

  1. Département de Mathématiques, Laboratoire de Topologie, Université de Bourgogne, BP 138, 21004 Dijon Cedex, France

Abstract

We consider the problem of constructing the optimal closed loop control in the time minimal control problem, with terminal constraint belonging to a manifold of codimension one, for systems of the form v̇=X+uY, |u|1 and vR2 or R3, under generic assumptions. The analysis is localized near the terminal manifold and is developed to control a class of chemical systems.

Bibliography

  1. R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
  2. B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Math. 5 (1993), 111-159.
  3. B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, to appear in SIAM J. Control Optim.
  4. B. Bonnard and M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, preprint, Laboratoire de Topologie de Dijon, 1992, to appear in JMSEC.
  5. I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and Maxwell cases, Trans. Amer. Math. Soc. 299 (1977), 225-243.
  6. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967.
  7. H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), 237-274.
  8. H. Schättler, The local structure of time optimal trajectories under generic conditions, SIAM J. Control Optim. 26 (1988), 899-918.
  9. H. J. Sussmann, The structure of time optimal trajectories for single-input systems in the plane: the C non singular case, ibid. 25 (1987), 433-465.
  10. H. J. Sussmann, Regular synthesis for time optimal control single-input real analytic systems in the plane, ibid. 25 (1987), 1145-1162.
Pages:
95-109
Main language of publication
English
Published
1995
Exact and natural sciences