ArticleOriginal scientific text
Title
Connections between recent Olech-type lemmas and Visintin's theorem
Authors 1
Affiliations
- Mathematical Institute, University of Utrecht, Utrecht, The Netherlands
Abstract
A recent Olech-type lemma of Artstein-Rzeżuchowski [2] and its generalization in [7] are shown to follow from Visintin's theorem, by exploiting a well-known property of extreme points of the integral of a multifunction.
Bibliography
- Z. Artstein, A note on Fatou's lemma in several dimensions, J. Math. Econom. 6 (1979), 277-282.
- Z. Artstein and T. Rzeżuchowski, A note on Olech's lemma, Studia Math. 98 (1991), 91-94.
- J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
- E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-599.
- E. J. Balder, On weak convergence implying strong convergence in
-spaces, Bull Austral. Math. Soc. 33 (1986), 363-368. - E. J. Balder, A unified approach to several results involving integrals of multifunctions, Set-Valued Anal. 2 (1994), 63-75.
- E. J. Balder, On equivalence of strong and weak convergence in
-spaces under extreme point conditions, Israel J. Math. 75 (1991), 21-47. - J. K. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980), 16-26.
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
- V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (3) (1972), 379-400.
- J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.
- J. Neveu, Extremal solutions of a control system, J. Differential Equations 2 (1966), 74-101.
- J. Neveu, Existence theory in optimal control, in: Control Theory and Topics in Functional Analysis, IAEA, Vienna, 1976, 291-328.
- J. Pfanzagl, Convexity and conditional expectations, Ann. Probab. 2 (1974), 490-494.
- M. Slaby, Strong convergence of vector-valued pramarts and subpramarts, Probab. Math. Statist. 5 (1985), 187-196.
- M. Valadier, Young measures, weak and strong convergence and the Visintin-Balder theorem, Set-Valued Anal. 2 (1994), 357-367.
- A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations 9 (1984), 439-466.