Przejdź do menu głównego
Przejdź do treści
PL
|
EN
Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na
https://bibliotekanauki.pl
Szukaj
Przeglądaj
Pomoc
O nas
test
PL
EN
BibTeX
PN-ISO 690:2012
Chicago
Chicago (Autor-Data)
Harvard
ACS
ACS (bez tytułu art.)
IEEE
Preferencje
Polski
English
Język
Widoczny
[Schowaj]
Abstrakt
10
20
50
100
Liczba wyników
Artykuł - szczegóły
Narzędzia
PL
EN
BibTeX
PN-ISO 690:2012
Chicago
Chicago (Autor-Data)
Harvard
ACS
ACS (bez tytułu art.)
IEEE
Adres strony
Kopiuj
Czasopismo
Banach Center Publications
1995
|
32
|
1
| 47-52
Tytuł artykułu
Connections between recent Olech-type lemmas and Visintin's theorem
Autorzy
Erik J. Balder
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A recent Olech-type lemma of Artstein-Rzeżuchowski [2] and its generalization in [7] are shown to follow from Visintin's theorem, by exploiting a well-known property of extreme points of the integral of a multifunction.
Słowa kluczowe
Wydawca
Institute of Mathematics Polish Academy of Sciences
Czasopismo
Banach Center Publications
Rocznik
1995
Tom
32
Numer
1
Strony
47-52
Opis fizyczny
Daty
wydano
1995
Twórcy
autor
Erik J. Balder
Mathematical Institute, University of Utrecht, Utrecht, The Netherlands
Bibliografia
[1] Z. Artstein, A note on Fatou's lemma in several dimensions, J. Math. Econom. 6 (1979), 277-282.
[2] Z. Artstein and T. Rzeżuchowski, A note on Olech's lemma, Studia Math. 98 (1991), 91-94.
[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[4] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
[5] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-599.
[6] E. J. Balder, On weak convergence implying strong convergence in $L_1$-spaces, Bull Austral. Math. Soc. 33 (1986), 363-368.
[7] E. J. Balder, A unified approach to several results involving integrals of multifunctions, Set-Valued Anal. 2 (1994), 63-75.
[8] E. J. Balder, On equivalence of strong and weak convergence in $L_1$-spaces under extreme point conditions, Israel J. Math. 75 (1991), 21-47.
[9] J. K. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980), 16-26.
[10] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
[11] V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (3) (1972), 379-400.
[12] J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.
[13] J. Neveu, Extremal solutions of a control system, J. Differential Equations 2 (1966), 74-101.
[14] J. Neveu, Existence theory in optimal control, in: Control Theory and Topics in Functional Analysis, IAEA, Vienna, 1976, 291-328.
[15] J. Pfanzagl, Convexity and conditional expectations, Ann. Probab. 2 (1974), 490-494.
[16] M. Slaby, Strong convergence of vector-valued pramarts and subpramarts, Probab. Math. Statist. 5 (1985), 187-196.
[17] M. Valadier, Young measures, weak and strong convergence and the Visintin-Balder theorem, Set-Valued Anal. 2 (1994), 357-367.
[18] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations 9 (1984), 439-466.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv32z1p47bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.