ArticleOriginal scientific text

Title

Connections between recent Olech-type lemmas and Visintin's theorem

Authors 1

Affiliations

  1. Mathematical Institute, University of Utrecht, Utrecht, The Netherlands

Abstract

A recent Olech-type lemma of Artstein-Rzeżuchowski [2] and its generalization in [7] are shown to follow from Visintin's theorem, by exploiting a well-known property of extreme points of the integral of a multifunction.

Bibliography

  1. Z. Artstein, A note on Fatou's lemma in several dimensions, J. Math. Econom. 6 (1979), 277-282.
  2. Z. Artstein and T. Rzeżuchowski, A note on Olech's lemma, Studia Math. 98 (1991), 91-94.
  3. J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
  4. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
  5. E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-599.
  6. E. J. Balder, On weak convergence implying strong convergence in L1-spaces, Bull Austral. Math. Soc. 33 (1986), 363-368.
  7. E. J. Balder, A unified approach to several results involving integrals of multifunctions, Set-Valued Anal. 2 (1994), 63-75.
  8. E. J. Balder, On equivalence of strong and weak convergence in L1-spaces under extreme point conditions, Israel J. Math. 75 (1991), 21-47.
  9. J. K. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980), 16-26.
  10. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
  11. V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (3) (1972), 379-400.
  12. J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.
  13. J. Neveu, Extremal solutions of a control system, J. Differential Equations 2 (1966), 74-101.
  14. J. Neveu, Existence theory in optimal control, in: Control Theory and Topics in Functional Analysis, IAEA, Vienna, 1976, 291-328.
  15. J. Pfanzagl, Convexity and conditional expectations, Ann. Probab. 2 (1974), 490-494.
  16. M. Slaby, Strong convergence of vector-valued pramarts and subpramarts, Probab. Math. Statist. 5 (1985), 187-196.
  17. M. Valadier, Young measures, weak and strong convergence and the Visintin-Balder theorem, Set-Valued Anal. 2 (1994), 357-367.
  18. A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations 9 (1984), 439-466.
Pages:
47-52
Main language of publication
English
Published
1995
Exact and natural sciences