ArticleOriginal scientific text
Title
Symmetries and integrals of motion in optimal control
Authors 1
Affiliations
- Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A.
Bibliography
- F. Albrecht, Topics in Control Theory, Springer, Berlin, 1968.
- L. D. Berkovitz, Optimal Control Theory, Springer, New York, 1974.
- F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983.
- L. E. Dubins, On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, Amer. J. Math. 79 (1957), 497-516.
- B. Kaskosz and S. Łojasiewicz Jr., A Maximum Principle for generalized control systems, Nonlinear Anal. 9 (1985), 109-130.
- E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967.
- A. A. Markov, Some examples of the solution of a special kind of problem in greatest and least quantities, Soobshch. Kharkovsk. Mat. Obshch. 1 (1887), 250-276 (in Russian).
- L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (translated by K. N. Trigoroff, L. W. Neustadt, editor), Wiley, 1962.
- J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific J. Math. 145 (1990), 367-393.
- H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
- H. J. Sussmann and G. Tang, Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, SIAM J. Control, to appear.
- H. J. Sussmann, Shortest paths with a prescribed bound on the curvature: the three-dimensional case, in preparation.
- H. J. Sussmann, An introduction to the coordinate-free Maximum Principle, in preparation.