ArticleOriginal scientific text

Title

Symmetries and integrals of motion in optimal control

Authors 1

Affiliations

  1. Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A.

Bibliography

  1. F. Albrecht, Topics in Control Theory, Springer, Berlin, 1968.
  2. L. D. Berkovitz, Optimal Control Theory, Springer, New York, 1974.
  3. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983.
  4. L. E. Dubins, On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, Amer. J. Math. 79 (1957), 497-516.
  5. B. Kaskosz and S. Łojasiewicz Jr., A Maximum Principle for generalized control systems, Nonlinear Anal. 9 (1985), 109-130.
  6. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967.
  7. A. A. Markov, Some examples of the solution of a special kind of problem in greatest and least quantities, Soobshch. Kharkovsk. Mat. Obshch. 1 (1887), 250-276 (in Russian).
  8. L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (translated by K. N. Trigoroff, L. W. Neustadt, editor), Wiley, 1962.
  9. J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific J. Math. 145 (1990), 367-393.
  10. H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
  11. H. J. Sussmann and G. Tang, Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, SIAM J. Control, to appear.
  12. H. J. Sussmann, Shortest paths with a prescribed bound on the curvature: the three-dimensional case, in preparation.
  13. H. J. Sussmann, An introduction to the coordinate-free Maximum Principle, in preparation.
Pages:
379-393
Main language of publication
English
Published
1995
Exact and natural sciences