ArticleOriginal scientific text

Title

A differential geometric setting for dynamic equivalence and dynamic linearization

Authors 1

Affiliations

  1. I.N.R.I.A., 2004 Route des Lucioles, B.P. 93, 06902 Sophia Antipolis, France

Abstract

This paper presents an (infinite-dimensional) geometric framework for control systems, based on infinite jet bundles, where a system is represented by a single vector field and dynamic equivalence (to be precise: equivalence by endogenous dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are very much related to Lie-Bäcklund transformations. It is proved in this framework that dynamic equivalence of single-input systems is the same as static equivalence.

Keywords

flat systems, infinite jet bundles, Dynamic feedback equivalence, dynamic feedback linearization, Lie-Bäcklund transformations, contact transformations

Bibliography

  1. R. L. Anderson and N. H. Ibragimov, Lie-Bäcklund Transformations in Applications, SIAM Stud. Appl. Math., SIAM, Philadelphia, 1979.
  2. E. Aranda-Bricaire, C. H. Moog and J.-B. Pomet, A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Control 40 (1995), 127-132.
  3. E. Aranda-Bricaire, C. H. Moog and J.-B. Pomet, Infinitesimal Brunovský form for nonlinear systems with applications to dynamic linearization, this volume.
  4. N. Bourbaki, Eléments de Mathématique, Espaces Vectoriels Topologiques, chap. 1, Masson, Paris, 1981.
  5. P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 176-188.
  6. B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Lett. 13 (1989), 143-151.
  7. B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57.
  8. G. Conte, A.-M. Perdon and C. Moog, The differential field associated to a general analytic nonlinear system, IEEE Trans. Automat. Control 38 (1993), 1120-1124.
  9. E. Delaleau, Sur les dérivées de l'entrée en représentation et commande des systèmes non-linéaires, Thèse de l'Unviversité Paris XI, Orsay, 1993.
  10. M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238.
  11. M. Fliess, Décomposition en cascade des systèmes automatiques et feuilletages invariants, Bull. Soc. Math. France 113 (1985), 285-293.
  12. M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: 2nd IFAC NOLCOS Symposium, 1992, 408-412.
  13. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris Sér. I 315 (1992), 619-624.
  14. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, ibid., to appear.
  15. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Towards a new differential geometric setting in nonlinear control, Presented at International Geometrical Colloquium, Moscow, May 1993, and to appear in the proceedings.
  16. E. Goursat, Le problème de Bäcklund, Mém. Sci. Math. 6, Gauthier-Villars, Paris, 1925.
  17. R. S. Hamilton, The Inverse Function Theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
  18. B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: 2nd IFAC NOLCOS Symposium, 1992, 393-397.
  19. B. Jakubczyk, Dynamic feedback equivalence of nonlinear control systems, preprint, 1993.
  20. I. S. Krasil'shchik, V. V. Lychagin and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Adv. Stud. Contemp. Math. 1, Gordon & Breach, 1986.
  21. P. Martin, Contribution à l'étude des systèmes non linéaires différentiellement plats, Thèse de Doctorat, Ecole des Mines de Paris, 1992.
  22. P. Otterson and G. Svetlichny, On derivative-dependent deformations of differential maps, J. Differential Equations 36 (1980), 270-294.
  23. F. A. E. Pirani, D. C. Robinson and W. F. Shadwick, Local jet bundle formulation of Bäcklund transformations, Math. Phys. Stud., Reidel, Dordrecht, 1979.
  24. J.-B. Pomet, C. H. Moog and E. Aranda, A non-exact Brunovský form and dynamic feedback linearization, in: Proc. 31st. IEEE Conf. Dec. Cont., 1992, 2012-2017.
  25. J.-F. Pommaret, Géométrie différentielle algébrique et théorie du contrôle, C. R. Acad. Sci. Paris Sér. I 302 (1986), 547-550.
  26. D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser. 142, Cambridge University Press, Cambridge, 1989.
  27. W. F. Shadwick, Absolute equivalence and dynamic feedback linearization, Systems Control Lett. 15 (1990), 35-39.
  28. A. M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math. 2 (1984), 21-78.
  29. J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991), 259-294.
Pages:
319-339
Main language of publication
English
Published
1995
Exact and natural sciences