Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 32 | 1 | 245-260

Tytuł artykułu

Systems of rays in the presence of distribution of hyperplanes

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Horizontal systems of rays arise in the study of integral curves of Hamiltonian systems $v_H$ on T*X, which are tangent to a given distribution V of hyperplanes on X. We investigate the local properties of systems of rays for general pairs (H,V) as well as for Hamiltonians H such that the corresponding Hamiltonian vector fields $v_H$ are horizontal with respect to V. As an example we explicitly calculate the space of horizontal geodesics and the corresponding systems of rays for the canonical distribution on the Heisenberg group. Local stability of systems of horizontal rays based on the standard singularity theory of Lagrangian submanifolds is also considered.

Rocznik

Tom

32

Numer

1

Strony

245-260

Opis fizyczny

Daty

wydano
1995

Twórcy

autor
  • Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

Bibliografia

  • [1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985.
  • [2] V. I. Arnold, Lagrangian submanifolds with singularities, asymptotic rays and the open swallowtail, Funktsional. Anal. i Prilozhen. 15 (4) (1981), 1-14 (in Russian).
  • [3] S. Bloch, The dilogarithm and extensions of Lie algebras, in: Lecture Notes in Math. 854, Springer 1981, 1-23.
  • [4] Yu. V. Chekanov, Caustics in geometrical optics, Functional. Anal. Appl. 30 (1986), 223-226.
  • [5] J. Guckenheimer, Caustics and nondegenerate Hamiltonians, Topology 13 (1974), 127-133.
  • [6] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984.
  • [7] S. Janeczko, Generalized Luneburg canonical varieties and vector fields on quasicaustics, J. Math. Phys. 31 (1991), 997-1009.
  • [8] S. Janeczko and R. Montgomery, On systems of gliding rays in sub-Riemannian geometry, to appear.
  • [9] J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser. 174, Cambridge Univ. Press 1992.
  • [10] J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, Cambridge, 1982.
  • [11] J. Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1970), 95-178.
  • [12] J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry 21 (1985), 35-45.
  • [13] R. S. Strichartz, Sub-Riemannian geometry, ibid. 24 (1986), 221-263.
  • [14] R. S. Strichartz, Corrections to 'Sub-Riemannian Geometry' ibid. 30 (1989), 595-596.
  • [15] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., 1977.
  • [16] A. M. Vershik and V. Ya. Gershkovich, Non-holonomic Riemannian manifolds, in: Dynamical Systems 7, Mathematical Encyclopaedia, vol. 16, 1987 (in Russian).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv32z1p245bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.