PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 32 | 1 | 209-225
Tytuł artykułu

Differential flatness and defect: an overview

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra which suits well to the fact that, in accordance with Willems' standpoint, flatness and defect are best defined without distinguishing between input, state, output and other variables. We treat an example of non-flat system, the variable-length pendulum. A high frequency control strategy is proposed such that the averaged system becomes flat.
Słowa kluczowe
Rocznik
Tom
32
Numer
1
Strony
209-225
Opis fizyczny
Daty
wydano
1995
Twórcy
  • Laboratoire des Signaux et Systèmes, CNRS-ESE, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
autor
  • Centre Automatique et Systèmes, École des Mines de Paris, 35, rue Saint-Honoré, 77305 Fontainebleau Cedex, France
  • Centre Automatique et Systèmes, École des Mines de Paris, 35, rue Saint-Honoré, 77305 Fontainebleau Cedex, France
  • Centre Automatique et Systèmes, École des Mines de Paris, 60, bd. Saint-Michel, 75272 Paris Cedex 06, France
Bibliografia
  • [1] J. Baillieul, Stable average motions of mechanical systems subject to periodic forcing, reprint, 1993.
  • [2] J. Bentsman, Vibrational control of a class of nonlinear multiplicative vibrations, IEEE Trans. Automat. Control 32 (1987), 711-716.
  • [3] A. Bressan and F. Rampazzo, On differential systems with quadratic impulses and their applications to Lagrangian mechanics, SIAM J. Control Optim. 31 (1993), 1205-1220.
  • [4] E. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles, J. Reine Angew. Math. 145 (1915), 86-91; also in: Oeuvres Complètes, part II, vol. 2, CNRS, Paris, 1984, 1164-1174.
  • [5] P. J. Cassidy, Differential algebraic groups, Amer. J. Math. 94 (1972), 891-954.
  • [6] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Letters 13 (1989), 143-151.
  • [7] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57.
  • [8] D. Claude, Everything you always wanted to know about linearization, in: M. Fliess and M. Hazewinkel (ed.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, Dordrecht, 1986, 181-226.
  • [9] P. M. Cohn, Free Rings and their Relations, 2nd ed., Academic Press, London, 1985.
  • [10] J. M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Control Optim. 1994.
  • [11] E. Delaleau et M. Fliess, Algorithme de structure, filtrations et découplage, C.R. Acad. Sci. Paris Sér. I 315 (1992), 101-106.
  • [12] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672.
  • [13] S. Diop, Elimination in control theory, Math. Control Signals Systems 4 (1991), 17-32.
  • [14] S. Diop, Differential-algebraic decision methods and some applications to system theory, Theoret. Comput. Sci. 98 (1992), 137-161.
  • [15] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238.
  • [16] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control 35 (1990), 994-1001.
  • [17] M. Fliess, Some basic structural properties of generalized linear systems, Systems Control Letters 15 (1990), 391-396.
  • [18] M. Fliess, A remark on Willems' trajectory characterization of linear controllability, ibid. 19 (1992), 43-45.
  • [19] M. Fliess and S. T. Glad, An algebraic approach to linear and nonlinear control, in: H. J. Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its Applications, Birkhäuser, Boston, 1993, 223-267.
  • [20] M. Fliess and M. Hasler, Questioning the classical state space description via circuit examples, in: M. A. Kashoek, J. H. van Schuppen, and A. C. M. Ran (eds.), Realization and Modelling in System Theory, MTNS'89, volume I, Birkhäuser, Boston, 1990, 1-12.
  • [21] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, 1992, 408-412.
  • [22] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris Sér. I 315 (1992), 619-624.
  • [23] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Défaut d'un système non linéaire et commande haute fréquence, ibid. 316 (1993), 513-518.
  • [24] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, ibid. 317 (1993), 981-986.
  • [25] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Towards a new differential geometric setting in nonlinear control, in: Proc. Internat. Geometric Coll., Moscow, May 1993.
  • [26] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples, Internat. J. Control, 1995.
  • [27] M. Fliess, J. Lévine and P. Rouchon, A simplified approach of crane control via a generalized state-space model, in: Proc. 30th IEEE Control Decision Conf., Brighton, 1991, 736-741.
  • [28] M. Fliess, J. Lévine, and P. Rouchon, A generalized state variable representation for a simplified crane description, Internat. J. Control 58 (1993), 277-283.
  • [29] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983.
  • [30] R. Hartshorne, Algebraic Geometry, Springer, New York, 1977.
  • [31] D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen, Math. Ann. 73 (1912), 95-108; also in: Gesammelte Abhandlungen, Vol. III, Chelsea, New York, 1965, 81-93.
  • [32] A. Isidori, Control of nonlinear systems via dynamic state feedback, in: M. Fliess and M. Hazewinkel (eds.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, 1986.
  • [33] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, New York, 1989.
  • [34] A. Isidori, C. H. Moog, and A. De Luca, A sufficient condition for full linearization via dynamic state feedback, in: Proc. 25th IEEE Conf. Decision Control, 1986, 203-208.
  • [35] N. Jacobson, Basic Algebra, I and II, 2nd ed., Freeman, New York, 1985.
  • [36] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, 1992, 393-397.
  • [37] B. Jakubczyk, Invariants of dynamic feedback and free systems, in: Proc. ECC'93, Groningen, 1993, 1510-1513.
  • [38] J. Johnson, Kähler differentials and differential algebra, Ann. of Math. 89 (1969), 92-98.
  • [39] J. Johnson, Order for systems of differential equations and a generalization of the notion of differential ring, J. Algebra 78 (1982), 91-119.
  • [40] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980.
  • [41] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.
  • [42] E. R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, 1985.
  • [43] C.-W. Li and Y.-K. Feng, Functional reproducibility of general multivariable analytic nonlinear systems, Internat. J. Control 45 (1987), 255-268.
  • [44] P. Martin, Contribution à l'étude des systèmes diffèrentiellement plats, PhD thesis, École des Mines de Paris, 1992.
  • [45] S. M. Meerkov, Principle of vibrational control: theory and applications, IEEE Trans. Automat. Control 25 (1980), 755-762.
  • [46] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer, New York, 1990.
  • [47] J. B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, this volume, 319-339.
  • [48] J. F. Ritt, Systems of differential equations i. theory of ideals, Amer. J. Math. 60 (1938), 535-548.
  • [49] J. F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950.
  • [50] A. Seidenberg, Some basic theorems in differential algebra (characteristic p, arbitrary), Trans. Amer. Math. Soc. 73 (1952), 174-190.
  • [51] W. F. Shadwick, Absolute equivalence and dynamic feedback linearization, Systems Control Letters 15 (1990), 35-39.
  • [52] E. D. Sontag, Finite dimensional open loop control generator for nonlinear control systems, Internat. J. Control 47 (1988), 537-556.
  • [53] E. D. Sontag, Universal nonsingular controls, Systems Control Letters 19 (1992), 221-224.
  • [54] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Differential Equations 12 (1972), 95-116.
  • [55] H. J. Sussmann and W. Liu, Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories, in: Proc. 30th IEEE Control Decision Conf., Brighton, 1991, 437-442.
  • [56] J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991), 259-294.
  • [57] D. J. Winter, The Structure of Fields, Springer, New York, 1974.
  • [58] V. V. Zharinov, Geometrical Aspect of Partial Differential Equations, World Scientific, Singapore, 1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv32z1p209bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.