PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 32 | 1 | 149-165
Tytuł artykułu

Toward a notion of canonical form for nonlinear systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
32
Numer
1
Strony
149-165
Opis fizyczny
Daty
wydano
1995
Twórcy
autor
  • Dipartimento di Automatica ed Elettronica, Università di Ancona, Via Brecce Bianche, 60131 Ancona, Italy
autor
  • Dipartimento di Matematica 'V. Volterra', Università di Ancona, Via Brecce Bianche, 60131 Ancona, Italy
autor
  • Lab. Automatique de Nantes, U.A. CNRS, ECN/Univ. de Nantes, 1 rue de la Noë, Nantes, France
Bibliografia
  • [1] G. Conte, C. H. Moog, A. M. Perdon and Y. F. Zheng, A generalized state space decomposition of nonlinear systems, in: Proc. 31st CDC IEEE, Tucson, 1992, 3676-3677.
  • [2] E. Delaleau and M. Fliess, An algebraic interpration of the structure algorithm with an application to feedback decoupling, in: Nonlinear Control Systems Design IFAC Symposium, Bordeaux, 1992, 489-494.
  • [3] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants for nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672.
  • [4] S. Diop and M. Fliess, On nonlinear observability, in: European Control Conference, Grenoble, 1991, 152-157
  • [5] M. Fliess, Nonlinear control theory and differential algebra, in: Proc. I.I.A.S.A. Conference on Modelling and Adaptive Control, Sopron, Hungary, 1986.
  • [6] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238.
  • [7] M. Fliess, Généralisation nonlinéaire de la forme canonique de commande et linéarisation par bouclage, C. R. Acad. Sci. Paris 308 (1989), 377-379.
  • [8] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, I.E.E.E. Trans. Automat. Control 35 (1990), 994-1001.
  • [9] H. Hammouri and J. P. Gauthier, Bilinearization up to output injection, Systems and Control Lett. 11 (1988), 139-149.
  • [10] H. Hammouri and J. P. Gauthier, Global time-varying linearization up to output injection, SIAM J. Control Optim. 30 (1992), 1295-1310.
  • [11] R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat Control AC-22 (1977), 728-740.
  • [12] A. Isidori, Nonlinear feedback, structure at infinity and the input-output linearization problem, in: Proc. MTNS 83, Beer Sheva, Lecture Notes in Control and Inform. Sci. 58, Springer, Berlin, 1984, 473-493.
  • [13] A. Isidori, Control of nonlinear systems via dynamic state-feedback, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 121-145.
  • [14] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, Berlin, 1989.
  • [15] A. Isidori and C. H. Moog, On the equivalence of the notion of transmission zeros, in: Modelling and Adaptive Contro, Proc. IIASA Conf., Sopron, Hungary, C. I. Byrnes and A. Kurszanski (eds.), Lecture Notes Control and Inform. Sci. 105, Springer, 1988, Berlin, 146-158.
  • [16] T. Kailath, Linear Systems, Prentice-Hall, New York, 1980.
  • [17] A. J. Krener, Normal form for linear and nonlinear sytems, in: Contemp. Math. 68, Amer. Math. Soc., 1987, 157-189.
  • [18] A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47-52.
  • [19] R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear systems to input-output prime forms, SIAM J. Control Optim., to appear.
  • [20] C. H. Moog, F. Plestan, G. Conte and A. M. Perdon, On canonical forms of nonlinear systems, in: Proc. ECC 93, Groningen, 1993, 1514-1517.
  • [21] A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control Optim. 11 (1973), 446-465.
  • [22] H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamics Control Systems, Springer, 1990.
  • [23] A. M. Perdon, G. Conte and C. H. Moog, Some canonical properties of nonlinear systems, in: Realization and Modelling in System Theory, Proc. MTNS 89, Amsterdam, 1989, 89-96.
  • [24] A. M. Perdon, Y. F. Zheng, C. H. Moog and G. Conte, Disturbance decoupling for nonlinear systems: a unified approach, Kybernetica 29 (1993), 479-484.
  • [25] W. Respondek, personal communication, 1994.
  • [26] J. Rudolph, Une forme canonique en bouclage quasi-statique, C.R. Acad. Sci. Paris 316 (1993), 1323-1328.
  • [27] S. N. Singh, A modified algorithm for invertibility in nonlinear systems, IEEE Trans. Automat. Control AC-26 (1981), 595-598.
  • [28] M. Zeitz, Canonical forms for nonlinear systems, in: Geometric Theory of Nonlinear Control Systems, B. Jakubczyk, W. Respondek and K. Tchon (eds.), Wrocław, Wydawnictwo Politechniki Wrocławskiej, 1985.
  • [29] Y. F. Zheng and L. Cao, Transfer structure of nonlinear systems, Tech. Rep., East China Normal Univ., 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv32z1p149bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.