ArticleOriginal scientific text

Title

Global linearization of nonlinear systems - A survey

Authors 1

Affiliations

  1. Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, P.O. Box 18, 182 08 Prague 8, Czech Republic

Abstract

A survey of the global linearization problem is presented. Known results are divided into two groups: results for general affine nonlinear systems and for bilinear systems. In the latter case stronger results are available. A comparision of various linearizing transformations is performed. Numerous illustrative examples are included.

Keywords

exact linearization, nonlinear control, global linearization

Bibliography

  1. W. M. Boothby, Some comments on global linearization of nonlinear systems, Systems Control Lett. 4 (1984), 143-149.
  2. W. M. Boothby, Global feedback linearizability of locally linearizable systems, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 243-246.
  3. R. W. Brockett, Feedback invariants for nonlinear systems, Prepr. IFAC Congr., Helsinki, Finland, 1978, 1115-1120.
  4. R. W. Brockett, On the algebraic structure of bilinear systems, in: Theory and Applications of Variable Structure Systems, R. R. Mohler and A. Ruberti (eds.), Academic Press, New York, 1972, 153-168.
  5. P. Brunovský, A classification of linear controllable systems, Kybernetika 1970, 173-180.
  6. C. Byrnes and A. Isidori, Asymptotic stabilization of minimal phase nonlinear systems, IEEE Trans. Automat. Contr. 36 (1991), 1122-1137.
  7. B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Lett. 13 (1989), 143-151.
  8. B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57.
  9. S. Čelikovský, On the global linearization of bilinear systems, Systems Control Lett. 15 (1990), 433-439.
  10. S. Čelikovský, On the global linearization of nonhomogeneous bilinear systems, ibid. 18 (1992), 397-402.
  11. S. Čelikovský, On the relation between local and global linearization of bilinear systems, in: Systems Structure and Control, V. Strejc (ed.), Pergamon Press, Oxford, 1992, 172-175.
  12. S. Čelikovský, Global state linearization of multi-input bilinear systems, in: Proc. 1st Asian Control Conf., Tokyo, July 1994, Vol. 3, 133-136.
  13. D. Cheng, T. J. Tarn and A. Isidori, Global linearization of nonlinear systems, in: Proc. 23rd. IEEE Conference on Decision and Control, 1984, 74-83.
  14. D. Cheng, T. J. Tarn and A. Isidori, Global external linearization of nonlinear systems via feedback, IEEE Trans. Automat Control AC-30 (1985), 808-811.
  15. D. Cheng, A. Isidori, W. Respondek and T. J. Tarn, Exact linearization of nonlinear systems with outputs, Math. Systems Theory, 21 (1988), 63-83.
  16. D. Claude, Everything you always wanted to know about linearization but were afraid to ask, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 181-226.
  17. W. Dayawansa, W. M. Boothby and D. L. Elliot, Global state and feedback equivalence of nonlinear systems, Systems Control Lett. 6 (1985), 229-234.
  18. W. Dayawansa, W. M. Boothby and D. L. Elliot, Global linearization by feedback and state transformations, in: Proc. 24th IEEE Conf. on Decision and Control, Dec. 1985, 1042-1049.
  19. L. R. Hunt, R. Su and G. Meyer, Global transformation of nonlinear systems, IEEE Trans. Automat. Control AC-28 (1983), 24-31.
  20. A. Isidori, J. A. Krener, C. Gori Giorgi and S. Monaco, Nonlinear Decoupling via feedback: a differential geometric approach, IEEE Trans. Automat. Control AC-26 (1981), 331-345.
  21. A. Isidori and A. Ruberti, On the synthesis of linear input-output responses for nonlinear systems, Systems Control Lett. 4 (1984), 17-22.
  22. A. Isidori, Nonlinear Control Systems: An Introduction, 2nd ed., Springer, Berlin, 1989.
  23. B. Jakubczyk and W. Respondek, On linearization of control systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 517-522.
  24. A. J. Krener, On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Control Optim. 11 (1973), 670-676.
  25. A. J. Krener, A decomposition theory for differentiable systems, ibid. 15 (1977), 813-829.
  26. A. J. Krener and A. Isidori, Linearization by output injection and nonlinear oservers, Systems Control Lett. 3 (1983), 47-52.
  27. R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear control systems to input-output prime forms, SIAM J. Control Optim. 32 (1994), 387-407.
  28. R. Marino, W. Respondek and A. J. van der Shaft, Almost disturbance decoupling for single-input single output nonlinear systems, IEEE Trans. Automat. Control 34 (1989), 1013-1017.
  29. H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamical Control Systems, Springer, Berlin, 1990.
  30. R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957).
  31. W. Respondek, Geometric methods in linearization of control systems, in: Mathematical Control Theory, Banach Center Publ. 14, PWN Warszawa, 1985, 453-467.
  32. W. Respondek, Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear systems, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 257-284.
  33. M. Sampei and K. Furuta, On time scaling for nonlinear systems: application to linearization, IEEE Trans. Automat. Control AC-31 (1986), 459-462.
  34. R. Su (1982), On the linear equivalents of nonlinear systems, Systems Control Lett. 2 (1982), 48-52.
  35. H. J. Sussmann, An extension of a theorem of Nagano on transitive Lie algebras, Proc. Amer. Math. Soc. 45 (1974), 349-356.
Pages:
123-137
Main language of publication
English
Published
1995
Exact and natural sciences