Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 32 | 1 | 111-121

Tytuł artykułu

Control structures

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We define an extension of the classical notion of a control system which we call a control structure. This is a geometric structure which can be defined on manifolds whose underlying topology is more complicated than that of a domain in $ℝ^n$. Every control structure turns out to be locally representable as a classical control system, but our extension has the advantage that it has various naturality properties which the (classical) coordinate formulation does not, including the existence of so-called universal objects and classifying maps. This more general viewpoint simplifies the study of the invariants of even classical control systems. Its main technical advantage is that tools like the method of equivalence can be directly and easily applied to the study of control structures.

Słowa kluczowe

Rocznik

Tom

32

Numer

1

Strony

111-121

Opis fizyczny

Daty

wydano
1995

Twórcy

  • Department of Mathematics, Duke University, P.O. Box 90320, Durham, North Carolina 27708-0320, U.S.A.
  • Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250, U.S.A.

Bibliografia

  • [1] W. Blaschke, Vorlesungen Über Differentialgeometrie II, Springer, Berlin, 1923.
  • [2] R. Brockett, Feedback Control of Linear and Non-linear Systems, Lecture Notes in Control and Information Science, vol. 39, Springer, New York, 1982.
  • [2a] R. Brockett and X. Dai, The dynamics of the ball and plate problem, preprint, 1993.
  • [3] R. Bryant, On notions of equivalence of variational problems with one independent variable, Contemporary Mathematics 68 (1987), 65-76.
  • [4] R. Gardner, The Method of Equivalence and Applications, SIAM-CBMS Regional Conf. Ser. in Appl. Math. 58, Philadelphia, 1989.
  • [5] R. Gardner, W. Shadwick and G. Wilkens, A geometric isomorphism with applications to closed loop controls, SIAM J. Control and Optim. 27 (1989), 1361-1368.
  • [6] R. Gardner and G. Wilkens, Classical geometries arising in feedback equivalence, in: Proceedings of the 32nd IEEE-CDC, San Antonio, Texas, 1993.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv32z1p111bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.