ArticleOriginal scientific text
Title
Contact geometry and CR-structures on spheres
Authors 1, 2
Affiliations
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 1A1
- Department of Mathematics, University of Washington GN-50, Seattle, Washington 98195, U.S.A.
Abstract
A normal form for small CR-deformations of the standard CR-structure on the (2n+1)-sphere is presented. The space of normal forms is parameterized by a single function on the sphere. For n>1, the normal form is used to obtain explicit embeddings into . For n=1, the cohomological obstruction to embeddability is identified.
Keywords
deformation theory, convex domains, moduli, Riemann maps, contact geometry, CR-structures
Bibliography
- [B] J. Bland, Contact geometry and CR-structures on
, Acta Math. 172 (1994), 1-49. - [BD1] J. Bland and T. Duchamp, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61-112.
- [BD2] J. Bland and T. Duchamp, Basepoint dependence of moduli for convex domains, in preparation (1993).
- [BdM] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 9 (1974/75), 1-13.
- [BE] D. M. Burns and C. L. Epstein, Embeddability for three dimensional CR-manifolds, J. Amer. Math. Soc. 3 (1990), 809-841.
- [CL] J. H. Cheng and J. Lee, A local slice theorem for 3-dimensional CR-structures, preprint.
- [FS] G. B. Folland and E. M. Stein, Estimates for the
-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. - [G] J. Gray, Some global properties of contact structures, Ann. of Math. 69 (1959), 421-450.
- [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- [L2] L. Lempert, On three dimensional Cauchy-Riemann manifolds, J. Amer. Math. Soc. 5 (1992), 923-969.
- [O] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer, Berlin, 1994.
- [R] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconvex boundary, in: Proceedings of the Conference on Complex Manifolds, A. Aeppli et al. (ed.), Springer, Berlin, 1965, 242-256.
- [W] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977.