ArticleOriginal scientific text

Title

Attraction des disques analytiques et continuité Höldérienne d'applications holomorphes propres

Authors 1

Affiliations

  1. Université des Sciences et Technologies de Lille, URA CNRS 751, U.F.R. de Mathématiques, 59655 Villeneuve d'Ascq Cedex, France

Bibliography

  1. F. Berteloot, Hölder continuity of proper holomorphic mappings, Studia Math. 100 (1991), 229-235.
  2. F. Berteloot, A remark on local continuous extension of holomorphic mappings, in: Contemp. Math. 137 (1992), 79-83.
  3. F. Berteloot et G. Cœuré, Domaines de C2, pseudoconvexes et de type fini, ayant un groupe non compact d'automorphismes, Ann. Inst. Fourier 41 (1) (1991), 77-86.
  4. K. Diederich and J. E. Fornaess, Proper holomorphic maps onto pseudoconvex domains with real analytic boundaries, Ann. of Math. 110 (1979), 575-592.
  5. F. Forstneric and J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252.
  6. J. E. Fornaess and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655.
  7. G. M. Henkin, An analytic polyhedron is not biholomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl. 14 (1973), 858-862.
  8. S. Pinchuk, Holomorphic aps in n and the Problem of Holomorphic Equivalence, Encyclopaedia of Math. Sci. 19, Springer, 1989.
  9. S. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 909-917.
  10. R. M. Range, On the topological extension to the boundary of biholomorphic maps in n, Trans. Amer. Math. Soc. 216 (1976), 203-216.
  11. N. Sibony, A class of hyperbolic manifolds, in: Ann. of Math. Stud. 100, 1981, 357-372.
Pages:
91-98
Main language of publication
French
Published
1995
Exact and natural sciences