ArticleOriginal scientific text

Title

The use of D-modules to study exponential polynomials

Authors 1, 2

Affiliations

  1. Mathematics Department & Institute of Systems Research, University of Maryland, College Park, Maryland 20742, U.S.A.
  2. Département de Mathématiques, Université de Bordeaux I, 33405 Talence, France

Abstract

This is a summary of recent work where we introduced a class of D-modules adapted to study ideals generated by exponential polynomials.

Bibliography

  1. M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145-150.
  2. C. A. Berenstein, R. Gay and A. Yger, Analytic continuation of currents and division problems, Forum Math. 1 (1989), 15-51.
  3. C. A. Berenstein, R. Gay, A. Vidras and A. Yger, Residues and Bézout Identities, Progr. Math. 113, Birkhäuser, 1993.
  4. C. A. Berenstein and B. A. Taylor, Interpolation problems in n with applications to harmonic analysis, J. Analyse Math. 37 (1980), 188-254.
  5. C.A. Berenstein and B.A. Taylor, On the geometry of interpolating varieties, in: Séminaire Lelong-Skoda 1980-81, Springer, Heidelberg, 1-25.
  6. C. A. Berenstein, B. A. Taylor et A. Yger, Sur les systèmes d'équations différence-différentielles, Ann. Inst. Fourier (Grenoble) 33 (1983), 109-130.
  7. C. A. Berenstein and A. Yger, Ideals generated by exponential polynomials, Adv. in Math. 60 (1986), 1-80.
  8. C. A. Berenstein and A. Yger, On Łojasiewicz type inequalities for exponential polynomials, J. Math. Anal. Appl. 129 (1988), 166-195.
  9. C. A. Berenstein and A. Yger, Analytic Bézout identities, Adv. in Appl. Math. 10 (1989), 51-74.
  10. C. A. Berenstein and A. Yger, Effective Bézout estimates in [z1,...,zn], Acta Math. 66 (1991), 69-120.
  11. C. A. Berenstein and A. Yger, Une formule de Jacobi et ses conséquences, Ann. Sci. École Norm. Sup. 24 (1991), 363-377.
  12. C. A. Berenstein and A. Yger, About Ehrenpreis' Fundamental Principle, in: Geometric and Algebraic Aspects in Several Complex Variables, C. A. Berenstein and D. C. Struppa (eds.), Editel, Rende, 1991, 47-61.
  13. C. A. Berenstein and A. Yger, Formules de représentation intégrale et problèmes de division, in: Diophantine Approximations and Transcendental Numbers, P. Philippon (ed.), Walter de Gruyter, Berlin, 1992, 15-37.
  14. C. A. Berenstein and A. Yger, D-modules and exponential polynomials, Compositio Math. (1995), to appear.
  15. B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (1982), 91-110.
  16. I. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Functional Anal. Appl. 6 (1972), 273-285.
  17. J.-E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979.
  18. A. Borel, Operations on algebraic D-modules, in: Algebraic D-modules, A. Borel (ed.), Academic Press, Boston, 1987, 207-269.
  19. L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley, 1970.
  20. D. I. Gurevich, Counterexamples to a problem of L. Schwartz, Functional Anal. Appl. 9 (1975), 116-120.
  21. L. Hörmander, The Analysis of Linear Partial Differential Operators, II, Springer, Berlin, 1983.
  22. M. Lejeune et B. Teissier, Quelques calculs utiles pour la résolution des singularités, Séminaire École Polytechnique, 1972, 130.
  23. B. Lichtin, Generalized Dirichlet series and B-functions, Compositio Math. 65 (1988), 81-120.
  24. L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. 48 (1947), 857-929.
  25. C. Sabbah, Proximité évanescente II. Equations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 64 (1987), 213-241.
Pages:
77-90
Main language of publication
English
Published
1995
Exact and natural sciences