ArticleOriginal scientific text
Title
The ratio of invariant metrics on the annulus and theta functions
Authors 1
Affiliations
- Department of Mathematics, Toyama University, Gofuku, Toyama 930, Japan
Bibliography
- K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains J. Math. Soc. Japan 38 (1986), 627-647
- K. Azukawa, The invariant pseudo-metric related to negative plurisubharmonic functions Kodai Math. J. 10 (1987), 83-92
- E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities Ann. Inst. Fourier (Grenoble) 38 (1988), 133-171
- K. Chandrasekharan, Elliptic Functions Springer, New York, 1985.
- C. Carathéodory, Über die Geometrie der analytischen Abbildungen, die durch analytische Funktionen von zwei Veränderlichen vermittelt werden Abh. Math. Sem.\ Univ. Hamburg 6 (1928), 96-145
- S. Dineen, The Schwarz Lemma Clarendon Press, Oxford, 1989.
- J. E. Fornaess and B. Stensοness, Lectures on Counterexamples in Several Complex Variables Princeton Univ. Press, Princeton, 1987.
- M. Jarnicki and P. Pflug, Invariant pseudodistances and pseudometrics--Completeness and product property Ann. Polon. Math. 55 (1991), 169-189
- M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances Bull. Soc. Math. France 113 (1985), 231-240
- M. Klimek, Infinitesimal pseudo-metrics and the Schwarz lemma Proc. Amer. Math. Soc. 105 (1989), 134-140
- M. Klimek, Pluripotential Theory Clarendon Press, Oxford, 1991.
- S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings Marcel Dekker, New York, 1970.
- S. Kobayashi, Intrinsic distances, measures and geometric function theory Bull. Amer. Math. Soc. 82 (1976), 357-416
- L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule Bull. Soc. Math. France 109 (1981), 427-474
- E. A. Poletskiĭ and B. V. Shabat, Invariant metrics in: Encyclopedia of Mathematical Sciences 9, G. M. Khenkin (ed.), 1989, 63-111
- H. L. Royden, Remarks on the Kobayashi metric in: Lecture Notes in Math. 185, Springer, Berlin, 1971, 125-137
- R. R. Simha, The Carathéodory metric of the annulus Proc. Amer. Math. Soc. 50 (1975), 162-166