ArticleOriginal scientific text

Title

Rectifiability in Teichmüller theory

Authors 1, 1

Affiliations

  1. Université Bordeaux I, CNRS, Mathématiques, 351 Cours de la Libération, F-33405 Talence, France

Bibliography

  1. L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. 72 (1960), 385-404.
  2. B. Bojarski, Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients, Mat. Sb. 85 (1957), 451-503 (in Russian).
  3. R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Sup. 16 (1983), 193-217.
  4. G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, ibid. 17 (1984), 157-189.
  5. M. Zinsmeister, Domaines de Lavrentiev, Publ. Math. d'Orsay, 1985.
  6. S. Semmes, Quasiconformal mappings and chord-arc curves, Trans. Amer. Math. Soc. 306 (1988), 233-263.
  7. K. Astala and M. Zinsmeister, Teichmüller spaces and BMOA, Math. Ann. 289 (1991), 613-625.
  8. L. Carleson, On mappings, conformal at the boundary, J. Analyse Math. 19 (1967), 1-13.
  9. B. Dahlberg, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), 1119-1138.
  10. R. Fefferman, C. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, to appear.
  11. D. Jerison and C. Kenig, Boundary behavior of harmonic functions in NTA domains, Adv. in Math. 46 (1982), 80-147.
  12. S. Agard, A geometric proof of Mostow rigidity theorem for groups of divergence type, Acta Math. 151 (1983), 231-252.
  13. R. Bowen, Hausdorff dimension of quasicircles, Publ. Math. IHES.
  14. D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982), 99-107.
  15. K. Astala and M. Zinsmeister, Holomorphic families of quasifuchsian groups, ibid., to appear.
Pages:
45-52
Main language of publication
English
Published
1995
Exact and natural sciences