ArticleOriginal scientific text

Title

Foliations with complex leaves

Authors 1

Affiliations

  1. Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

Bibliography

  1. A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
  2. A. Andreotti and M. Nacinovich, Analytic convexity, Ann. Scuola Norm. Sup. Pisa 7 (1980), 287-372.
  3. J. Chaumat et A. M. Chollet, Noyaux pour résoudre l'équation ∂̅ dans des classes ultradifférentiables sur des compacts irréguliers de n, preprint.
  4. M. Freeman, Local complex foliations of real submanifolds, Math. Ann. 209 (1970), 1-30.
  5. M. Freeman, Tangential Cauchy-Riemann equations and uniform approximation, Pacific J. Math. 33 (1970), 101-108.
  6. R. Gay et A. Sebbar, Division et extension dans l'algèbre A(Ω) d'un ouvert pseudo-convexe à bord lisse de n, Math. Z. 189 (1985), 421-447.
  7. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
  8. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.
  9. J. J. Kohn, Global regularity for ∂̅ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292.
  10. L. Nirenberg, A proof of the Malgrange preparation theorem, in: Liverpool Singularities 1, 97-105.
  11. C. Rea, Levi flat submanifolds and biholomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa 26 (1972), 664-681.
  12. N. Sibony, A class of hyperbolic manifolds, in: Recent Developments in Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981.
  13. F. Sommer, Komplexe analytische Blätterung reeler Mannigfaltigkeiten in n, Math. Ann. 136 (1958), 111-133.
  14. G. Tomassini, Extension d'objets CR, Math. Z. 194 (1987), 471-486.
Pages:
367-372
Main language of publication
English
Published
1995
Exact and natural sciences