ArticleOriginal scientific text

Title

Regularity of the tangential Cauchy-Riemann complex and applications

Authors 1

Affiliations

  1. Mathematisches Institut, Universität Bonn, Beringstr. 6, D-53115 Bonn, Germany

Bibliography

  1. T. Akahori, A new approach to the local embedding theorem of CR structures for n ≥ 4, Mem. Amer. Math. Soc. 366 (1987).
  2. A. Andreotti and C. D. Hill, Convexity and the Hans Lewy Problem I, II, Ann. Scuola Norm. Sup. Pisa 26 (1971), 325-363, 747-806.
  3. A. Boggess, Kernels for the tangential Cauchy-Riemann equations, Trans. Amer. Math. Soc. 262 (1980), 1-49.
  4. A. Boggess and M. C. Shaw, A kernel approach to the local solvability of the tangential Cauchy-Riemann equations, ibid. 289 (1985), 643-658.
  5. J. Bruna and J. M. Burgués, Holomorphic approximation and estimates for the ∂̅-equation on strictly pseudoconvex non-smooth domains, Duke Math. J. 55 (1987), 539-596.
  6. G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys. 32 (1977), 59-130.
  7. J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81 (1965), 451-472.
  8. M. Kuranishi, Strongly pseudoconvex CR structures over small balls, ibid., I, 115 (1982), 451-500; II, 116 (1982), 1-64; III, 116 (1982), 249-330.
  9. H. Lewy, On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, ibid. 64 (1956), 514-522.
  10. I. Lieb and R. M. Range, Lösungsoperatoren für den Cauchy-Riemann Komplex mit Ck-Abschätzungen, Math. Ann. 253 (1980), 145-164.
  11. L. Ma, Hölder and Lp-estimates for the ∂̅-equation on non-smooth strictly q-convex domains, Manuscripta Math. 74 (1992), 177-193.
  12. L. Ma and J. Michel, Local regularity for the tangential Cauchy-Riemann complex, J. Reine Angew. Math. 442 (1993), 63-90.
  13. L. Ma and J. Michel, Regularity of local embeddings of strictly pseudoconvex CR structures, ibid. 447 (1994), 147-164.
  14. L. Ma and J. Michel, On the regularity of CR structures for almost CR vector bundles, Math. Z. 218 (1995), 135-142.
  15. B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Oxford, 1966.
  16. J. Michel, Randregularität des ∂̅-Problems für die Halbkugel im n, Manuscripta Math. 55 (1986), 239-268.
  17. J. Michel, Randregularität des ∂̅-Problems für stückweise streng pseudokonvexe Gebiete in n, Math. Ann. 280 (1988), 46-68.
  18. K. Peters, Lösungsoperatoren für die ∂̅-Gleichung auf nichttransversalen Durchschnitten streng pseudokonvexer Gebiete, Diss. A, Berlin, 1990.
  19. R. M. Range and Y. T. Siu, Uniform estimates for the ∂̅-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354.
  20. A. V. Romanov, A formula and estimates for solutions of the tangential Cauchy-Riemann equation, Mat. Sb. 99 (1976), 58-83 (in Russian).
  21. R. T. Seeley, Extensions of C-functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626.
  22. M. C. Shaw, Hölder and Lp-estimates for ̅b on weakly pseudoconvex boundaries in 2, Math. Ann. 279 (1988), 635-652.
  23. M. C. Shaw, Lp-estimates for local solutions of ̅b on strongly pseudoconvex CR manifolds, ibid. 288 (1990), 35-62.
  24. M. C. Shaw, Optimal Hölder and Lp-estimates for ̅b on the boundaries of real ellipsoids in n, Trans. Amer. Math. Soc. 324 (1991), 213-234.
  25. S. Webster, On the local solution of the tangential Cauchy-Riemann equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 167-182.
  26. S. Webster, On the proof of Kuranishi's embedding theorem, ibid., 183-207.
  27. S. Webster, A new proof of the Newlander-Nirenberg theorem, Math. Z. 201 (1989), 303-316.
  28. S. Webster, The integrability problem for CR vector bundles, in: Proc. Sympos. Pure Math. 52 (1991), 355-368.
Pages:
263-273
Main language of publication
English
Published
1995
Exact and natural sciences