ArticleOriginal scientific text

Title

On a radius problem concerning a class of close-to-convex functions

Authors 1

Affiliations

  1. Département de Mathématiques et de Statistique, Université de Montréal, Montréal (QC) H3C 3J7, Canada

Abstract

The problem of estimating the radius of starlikeness of various classes of close-to-convex functions has attracted a certain number of mathematicians involved in geometric function theory ([7], volume 2, chapter 13). Lewandowski [11] has shown that normalized close-to-convex functions are starlike in the disc |z|<42-5. Krzyż [10] gave an example of a function f(z)=z+n=2anzn, non-starlike in the unit disc , and belonging to the class H = {f | f'() lies in the right half-plane.} More generally let H* = {f | f'() lies in some half-plane not containing 0.} To the best of our knowledge, the radii of starlikeness of both H and H* are still unknown, in spite of the fact that corresponding extremal functions can be described in a relatively simple way (by using, for example, Ruscheweyh's duality theory [15]). This paper is a survey of recent results concerning the radius of starlikeness of K = {f ∈ H | |f'(z)-1| < 1, z ∈ }.

Bibliography

  1. R. P. Boas, Entire Functions, Academic Press, New York, 1954.
  2. P. C. Cochrane and T. H. MacGregor, Fréchet differentiable functionals and support points for families of analytic functions, Trans. Amer. Math. Soc. 236 (1978), 75-92.
  3. K. de Leeuw and W. Rudin, Extreme points and extremum problems in H1, Pacific J. Math. 8 (1958), 467-485.
  4. P. L. Duren, Univalent Functions, Springer, New York, 1983.
  5. R. Fournier, On integrals of bounded analytic functions in the unit disc, Complex Variables 11 (1989), 125-133.
  6. R. Fournier, The range of a continuous linear functional over a class of functions defined by subordination, Glasgow Math. J. 32 (1990), 381-387.
  7. A. W. Goodman, Univalent Functions, Mariner Publishing Company, Tampa, 1983.
  8. D. J. Hallenbeck and T. H. MacGregor, Support points of families of analytic functions defined by subordination, Trans. Amer. Math. Soc. 278 (1983), 523-546.
  9. D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman, Boston, 1984.
  10. J. Krzyż, A counterexample concerning univalent functions, Folia Soc. Scient. Lubliniensis 2 (1962), 57-58.
  11. Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes, Ann. Univ. M. Curie-Skłodowska 14 (1960), 19-46.
  12. T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317.
  13. R. M. McLeod, The Generalized Riemann Integral, Mathematical Association of America, 1980.
  14. P. T. Mocanu, Some starlikeness conditions for analytic functions, Rev. Roumaine Math. Pures Appl. 33 (1988), 117-124.
  15. St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.
  16. St. Ruscheweyh, Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc, Trans. Amer. Math. Soc. 210 (1975), 63-74.
  17. O. Toeplitz, Die linearen volkommenen Räume der Funktionentheorie, Comment. Math. Helv. 23 (1949), 222-242.
  18. V. Singh, Univalent functions with bounded derivative in the unit disc, Indian J. Pure Appl. Math. 5 (1974), 733-754.
Pages:
187-195
Main language of publication
English
Published
1995
Exact and natural sciences