ArticleOriginal scientific text

Title

The Jacobian Conjecture: survey of some results

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4/508, 30-059 Kraków, Poland

Abstract

The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.

Bibliography

  1. [A] S. S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964.
  2. [BCW] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330.
  3. [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
  4. [Ch] Nguyen Van Chau, A sufficient condition for injectivity of polynomial maps on 2, Acta Math. Vietnamica, to appear.
  5. [CK] J. Chądzyński and T. Krasiński, Properness and the Jacobian Conjecture in C2, Bull. Soc. Sci. Lettres Łódź XIV, 132 (1992), 13-19.
  6. [Co] P. M. Cohn, On the structure of the GL2 of a ring, Publ. I.H.E.S. 30 (1966), 365-413.
  7. [D1] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313.
  8. [D2] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in C2, Ann. Polon. Math. 55 (1991), 95-101.
  9. [D3] L. M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993), 233-244.
  10. [D4] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1991.
  11. [DR] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian Conjecture, Ann. Polon. Math. 46 (1985), 85-90.
  12. [DT] L. M. Drużkowski and H. Tutaj, Differential conditions to verify the Jacobian Conjecture, ibid. 57 (1992), 253-263.
  13. [E] W. Engel, Ein Satz über ganze Cremona Transformationen der Ebene, Math. Ann. 130 (1955), 11-19.
  14. [Es1] A. van den Essen, A criterion to decide if a polynomial map is invertible and to compute the inverse, Comm. Algebra 18 (1990), 3183-3186.
  15. [Es2] A. van den Essen, Polynomial maps and the Jacobian Conjecture, Report 9034, Catholic University, Nijmegen, The Netherlands, 1990.
  16. [Es3] A. van den Essen, The exotic world of invertible polynomial maps, Nieuw Arch. Wisk. (4) 11 (1993), 21-31.
  17. [G] W. Gröbner, Sopra un teorema di B. Segre, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 31 (1961), 118-122.
  18. [K] O.-H. Keller, Ganze Cremona-Transformationen, Monatshefte Math. Phys. 47 (1939), 299-306.
  19. [KS] T. Krasiński and S. Spodzieja, On linear differential operators related to the n-dimensional Jacobian Conjecture, in: Lecture Notes Math. 1524, Springer, 1992, 308-315.
  20. [M] G. H. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), 679-705.
  21. [MO1] G. H. Meisters and C. Olech, A poly-flow formulation of the Jacobian Conjecture, Bull. Polish Acad. Sci. 35 (1987), 725-731.
  22. [MO2] G. H. Meisters and C. Olech, Solution of the Global Asymptotic Stability Jacobian Conjecture for the polynomial case, in: Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, 373-381.
  23. [MO3] G. H. Meisters and C. Olech, A Jacobian Condition for injectivity of differentiable plane maps, Ann. Polon. Math. 51 (1990), 249-254.
  24. [Mo] T. T. Moh, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212.
  25. [O] S. Oda, The Jacobian Problem and the simply-connectedness of An over a field k of characteristic zero, preprint, Osaka University, 1980.
  26. [Or] S. Yu. Orevkov, On three-sheeted polynomial mappings of C2, Izv. Akad. Nauk SSSR 50 (6) (1986), 1231-1240 (in Russian).
  27. [P] A. Płoski, On the growth of proper polynomial mappings, Ann. Polon. Math. 45 (1985), 297-309.
  28. [R1] K. Rusek, A geometric approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 315-320.
  29. [R2] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1989.
  30. [RW] K. Rusek and T. Winiarski, Polynomial automorphisms of Cn, Univ. Iagell. Acta Math. 24 (1984), 143-149.
  31. [S1] B. Segre, Corrispondenze di Möbius e Transformazioni cremoniane intere, Atti Accad. Sci. Torino: Cl. Sci. Fis. Mat. Nat. 91 (1956-57), 3-19.
  32. [S2] B. Segre, Forma differenziali e loro integrali, vol. II, Docet, Roma, 1956.
  33. [S3] B. Segre, Variazione continua ed omotopia in geometria algebraica, Ann. Mat. Pura Appl. 100 (1960), 149-186.
  34. [St] B. Segre, On linear differential operators related to the Jacobian Conjecture, J. Pure Appl. Algebra 52 (1989), 175-186.
  35. [V] A. G. Vitushkin, Some examples connected with polynomial mappings in n, Izv. Akad. Nauk SSSR Ser. Mat. 35 (2) (1971), 269-279.
  36. [W] T. Winiarski, Inverse of polynomial automorphisms of n, Bull. Acad. Polon. Sci. Math. 27 (1979), 673-674.
  37. [Wr1] D. Wright, The amalgamated free product structure of GL2(k[X1,...,Xn]) and the weak Jacobian Theorem for two variables, J. Pure Appl. Algebra 12 (1978), 235-251.
  38. [Wr2] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra 34 (1993), 85-97.
  39. [Y] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), 141-150 (in Russian).
Pages:
163-171
Main language of publication
English
Published
1995
Exact and natural sciences