ArticleOriginal scientific text

Title

The symmetric pluricomplex Green function

Authors 1

Affiliations

  1. Department of Mathematics, University of Umeå, S-90187 Umeå, Sweden

Bibliography

  1. K. Azukawa, The invariant pseudometric related to negative plurisubharmonic function, Kodai Math. J. 10 (1987), 83-92.
  2. E. Bedford and J. P. Demailly, Two counterexamples concerning the pluri-complex Green function in n, Indiana Univ. Math. J. 37 (1988), 865-867.
  3. U. Cegrell, Capacities in Complex Analysis. Aspects of Mathematics, 14, Vieweg, 1988.
  4. J. P. Demailly, Mesures de Monge-Ampère et mesures pluri-sousharmoniques, Math. Z. 194 (1987), 519-564.
  5. J. P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France 19 (1985), 1-125.
  6. M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter & Co., 1993.
  7. M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240.
  8. M. Klimek, Infinitesimal pseudometrics and the Schwarz lemma, Proc. Amer. Math. Soc. 105 (1989), 134-140.
  9. M. Klimek, Pluripotential Theory, Oxford Science Publications, 1991.
  10. S. Kołodziej, The logarithmic capacity in n, Ann. Polon. Math. 48 (1988), 253-267.
Pages:
135-141
Main language of publication
English
Published
1995
Exact and natural sciences