PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 31 | 1 | 115-123
Tytuł artykułu

On discrepancy theorems with applications to approximation theory

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give an overview on discrepancy theorems based on bounds of the logarithmic potential of signed measures. The results generalize well-known results of P. Erdős and P. Turán on the distribution of zeros of polynomials. Besides of new estimates for the zeros of orthogonal polynomials, we give further applications to approximation theory concerning the distribution of Fekete points, extreme points and zeros of polynomials of best uniform approximation.
Słowa kluczowe
Rocznik
Tom
31
Numer
1
Strony
115-123
Opis fizyczny
Daty
wydano
1995
Twórcy
  • Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, Ostenstr. 26-28, D-85071 Eichstätt, Germany
Bibliografia
  • [1] H.-P. Blatt, E. B. Saff and V. Totik, The distribution of extreme points in best complex polynomial approximation, Constr. Approx. 5 (1989), 357-370.
  • [2] H.-P. Blatt and R. Grothmann, Erdős-Turán theorems on a system of Jordan curves and arcs, ibid. 7 (1991), 19-47.
  • [3] H.-P. Blatt, On the distribution of simple zeros of polynomials, Approx. Theory 69 (1992), 250-268.
  • [4] H.-P. Blatt, Verteilung der Nullstellen von Polynomen auf Jordanbögen, in: P. Ganzinger (ed.), Informatik, Festschrift zum 60. Geburstag von G. Hotz, Teubner, Stuttgart, 1992.
  • [5] H.-P. Blatt and H. N. Mhaskar, A general discrepancy theorem, Ark. Mat., to appear.
  • [6] P. Erdős and P. Turán, On the uniformly dense distribution of certain sequences of points, Ann. Math. 41 (1940), 162-173.
  • [7] P. Erdős and P. Turán, On the uniformly dense distribution of certain sequences of points, ibid. 51 (1950), 105-119.
  • [8] T. Ganelius, Sequences of analytic functions and their zeros, Ark. Mat. 3 (1953), 1-50.
  • [9] R. Grothmann, Interpolation points and zeros of polynomials in approximation theory, Habilitationsschrift, Kath. Universität Eichstätt, 1993.
  • [10] M. I. Kadec, On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials, Amer. Math. Soc. Transl. (2)26 (1963), 231-234.
  • [11] W. Kleiner, Sur l'approximation de la représentation conforme par la méthode des points extrémaux de M. Leja, Ann. Polon. Math. 14 (1964), 131-140.
  • [12] N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972.
  • [13] H. N. Mhaskar, Some discrepancy theorems, in: Approximation Theory, Tampa, E. B. Saff (ed.), Lecture Notes in Math. 1287, Springer, New York, 117-131.
  • [14] M. Mignotte, Remarque sur une question relative à des fonctions conjuguées, C. R. Acad. Sci. Paris, to appear.
  • [15] Ch. Pommerenke, Über die Verteilung der Fekete-Punkte, Math. Ann. 168 (1967), 111-127.
  • [16] Ch. Pommerenke, Über die Verteilung der Fekete-Punkte II, ibid. 179 (1969), 212-218.
  • [17] P. Sjögren, Estimates of mass distributions from their potentials and energies, Ark. Mat. 10 (1972), 59-77.
  • [18] V. Totik, Distribution of simple zeros of polynomials, Acta Math. 170 (1993), 1-28.
  • [19] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, New York, 1950.
  • [20] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20, 5th ed., Providence, 1969.
  • [21] H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Adv. in Math. 3 (1969), 127-232.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv31z1p115bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.