PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1994 | 30 | 1 | 369-385
Tytuł artykułu

On the Gelfand-Hille theorems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
30
Numer
1
Strony
369-385
Opis fizyczny
Daty
wydano
1994
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland
Bibliografia
  • N. I. Akhiezer [1951], The work of academician S. N. Bernšteĭn on the constructive theory of functions (on the occasion of his seventieth birthday), Uspekhi Mat. Nauk 6, no. 1, 3-67 (in Russian).
  • G. R. Allan [1989], Power-bounded elements in a Banach algebra and a theorem of Gelfand, in: Conference on Automatic Continuity and Banach Algebras (Canberra, January 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, 1-12.
  • G. R. Allan and T. J. Ransford [1989], Power-dominated elements in a Banach algebra, Studia Math. 94, 63-79.
  • N. U. Arakelyan and V. A. Martirosyan [1991], Power Series: Analytic Extension and Localization of Singularities, University of Erevan, Erevan (in Russian).
  • W. Arendt [1983], Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32, 199-215.
  • W. Arendt and C. J. K. Batty [1988], Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306, 837-852.
  • A. Atzmon [1980], Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144, 27-63.
  • A. Atzmon [1983], Operators with resolvent of bounded characteristic, Integral Equations Operator Theory 6, 779-803.
  • A. Atzmon [1984], On the existence of hyperinvariant subspaces, J. Operator Theory 11, 3-40.
  • A. Atzmon [1993], Unicellular and non-unicellular dissipative operators, Acta Sci. Math. (Szeged) 57, 45-54.
  • A. Atzmon [in preparation], On the asymptotic growth of the sequence $∥T^{n+1} - T^n∥_{n=1}^∞$ for some operators T with σ(T) = {1}.
  • B. Aupetit [1991], A Primer on Spectral Theory, Springer, New York.
  • B. Aupetit and D. Drissi [1994], Some spectral inequalities involving generalized scalar operators, Studia Math. 109, 51-66.
  • B. Aupetit and J. Zemánek [1981], Local behaviour of the spectral radius in Banach algebras, J. London Math. Soc. 23, 171-178.
  • B. Aupetit and J. Zemánek [1983], Local behavior of the spectrum near algebraic elements, Linear Algebra Appl. 52/53, 39-44.
  • B. Aupetit and J. Zemánek [1990], A characterization of normal matrices by their exponentials, ibid. 132, 119-121; 180 (1993), 1-2.
  • B. A. Barnes [1989], Operators which satisfy polynomial growth conditions, Pacific J. Math. 138, 209-219.
  • H. Bateman, A. Erdélyi et al. [1953], Higher Transcendental Functions II, McGraw-Hill, New York.
  • C. J. K. Batty [1994a], Some Tauberian theorems related to operator theory, this volume, 21-34.
  • C. J. K. Batty [1994b], Asymptotic behaviour of semigroups of operators, this volume, 35-52.
  • B. Beauzamy [1987], Orbites tendant vers l'infini, C. R. Acad. Sci. Paris Sér. I Math. 305, 123-126.
  • B. Beauzamy [1988], Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam.
  • M. Berkani [1983], Inégalités et Propriétés Spectrales dans les Algèbres de Banach, Thèse, Université de Bordeaux I, Bordeaux.
  • A. Bernard [1971], Algèbres quotients d'algèbres uniformes, C. R. Acad. Sci. Paris Sér. A-B 272, A1101-A1104.
  • S. J. Bernau and C. B. Huijsmans [1990], On the positivity of the unit element in a normed lattice ordered algebra, Studia Math. 97, 143-149.
  • S. Bernstein [1923], Sur une propriété des fonctions entières, C. R. Acad. Sci. Paris 176, 1603-1605.
  • A. Beurling [1938], Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, in: Ninth Scandinavian Math. Congress, Helsingfors, 345-366. Also in: Collected Works of Arne Beurling, Vol. 2, Harmonic Analysis, L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer (eds.), Birkhäuser, Boston, 1989, 39-60.
  • L. Bieberbach [1927], Lehrbuch der Funktionentheorie II, Teubner, Berlin.
  • L. Bieberbach [1955], Analytische Fortsetzung, Springer, Berlin.
  • R. P. Boas, Jr. [1954], Entire Functions, Academic Press, New York.
  • R. P. Boas, Jr. [1969], Inequalities for the derivatives of polynomials, Math. Mag. 42, 165-174. F. F. Bonsall and M. J. Crabb [1970], The spectral radius of a Hermitian element of a Banach algebra, Bull. London Math. Soc. 2, 178-180.
  • F. F. Bonsall and J. Duncan [1971], Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, Cambridge.
  • F. F. Bonsall and J. Duncan [1973], Complete Normed Algebras, Springer, Berlin.
  • A. Browder [1969], States, numerical ranges, etc., Proc. Brown Univ. Informal Analysis Seminar, Providence.
  • A. Browder [1971], On Bernstein's inequality and the norm of Hermitian operators, Amer. Math. Monthly 78, 871-873.
  • A. Brunel et R. Émilion [1984], Sur les opérateurs positifs à moyennes bornées, C. R. Acad. Sci. Paris Sér. I Math. 298, 103-106.
  • A. L. Bukhgeĭm [1988], Introduction to the Theory of Inverse Problems, Nauka, Novosibirsk (in Russian).
  • L. Burlando [1994], Characterizations of nilpotent operators, letter.
  • L. Collatz [1963], Eigenwertaufgaben mit technischen Anwendungen, Geest & Portig, Leipzig.
  • E. F. Collingwood and A. J. Lohwater [1966], The Theory of Cluster Sets, Cambridge University Press, Cambridge.
  • I. Colojoară and C. Foiaş [1968], Theory of Generalized Spectral Operators, Gordon and Breach, New York.
  • J. W. Daniel and T. W. Palmer [1969], On σ(T), ∥T∥, and $∥T^{-1}∥$, Linear Algebra Appl. 2, 381-386.
  • Y. Derriennic and M. Lin [1973], On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13, 252-267.
  • P. Dienes [1931], The Taylor Series, Oxford University Press, Oxford.
  • W. F. Donoghue, Jr. [1963], On a problem of Nieminen, Inst. Hautes Études Sci. Publ. Math. 16, 127-129.
  • R. S. Doran and V. A. Belfi [1986], Characterizations of C*-Algebras, Marcel Dekker, New York.
  • N. Dunford [1943], Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54, 185-217.
  • R. Emilion [1985], Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61, 1-14.
  • J. Esterle [1983], Quasimultipliers, representations of $H^∞$, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, 66-162.
  • J. Esterle [1994], Uniqueness, strong forms of uniqueness and negative powers of contractions, this volume, 127-145.
  • G. Faber [1903], Über die Fortsetzbarkeit gewisser Taylorscher Reihen, Math. Ann. 57, 369-388.
  • C. Fernandez-Pujol [1988], Séries convergentes d'opérateurs dans un espace de Banach, C. R. Acad. Sci. Paris Sér. I Math. 306, 331-334.
  • I. Gelfand [1941a], Ideale und primäre Ideale in normierten Ringen, Mat. Sb. 9, 41-48.
  • I. Gelfand [1941b], Zur Theorie der Charactere der Abelschen topologischen Gruppen, ibid. 9, 49-50.
  • A. G. Gibson [1972], A discrete Hille-Yosida-Phillips theorem, J. Math. Anal. Appl. 39, 761-770.
  • I. Gohberg, S. Goldberg and M. A. Kaashoek [1990], Classes of Linear Operators I, Birkhäuser, Basel.
  • I. C. Gohberg and M. G. Kreĭn [1969], Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence.
  • S. Grabiner [1971], Ranges of quasi-nilpotent operators, Illinois J. Math. 15, 150-152.
  • S. Grabiner [1974], Ranges of products of operators, Canad. J. Math. 26, 1430-1441.
  • S. Grabiner [1979], Operator ranges and invariant subspaces, Indiana Univ. Math. J. 28, 845-857.
  • S. Grabiner [1982], Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34, 317-337.
  • P. R. Halmos [1967], A Hilbert Space Problem Book, Von Nostrand, Princeton.
  • E. Hille [1944], On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30, 58-60.
  • E. Hille [1962], Analytic Function Theory II, Ginn, Boston.
  • E. Hille and R. S. Phillips [1957], Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence.
  • R. A. Hirschfeld [1968], On semi-groups in Banach algebras close to the identity, Proc. Japan Acad. 44, 755.
  • V. I. Istrăţescu [1978], Topics in Linear Operator Theory, Academia Nazionale dei Lincei, Roma.
  • B. Johnson [1971], Continuity of operators commuting with quasi-nilpotent operators, Indiana Univ. Math. J. 20, 913-915.
  • L. K. Jones and M. Lin [1980], Unimodular eigenvalues and weak mixing, J. Funct. Anal. 35, 42-48.
  • M. A. Kaashoek [1969], Locally compact semi-algebras and spectral theory, Nieuw Arch. Wisk. 17, 8-16.
  • M. A. Kaashoek and T. T. West [1968], Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18, 428-438.
  • M. A. Kaashoek and T. T. West [1974], Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam.
  • S. Kantorovitz [1965], Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115, 194-224.
  • V. È] . Katsnel'son [1970], Conservative operator has norm equal to its spectral radius, Mat. Issled. 5, no. 3, 186-189 (in Russian).
  • Y. Katznelson and L. Tzafriri [1986], On power bounded operators, J. Funct. Anal. 68, 313-328.
  • L. Kérchy [1994], Unitary asymptotes of Hilbert space operators, this volume, 191-201.
  • K. Knopp [1947], Theorie und Anwendung der unendlichen Reihen, Springer, Berlin.
  • J. J. Koliha [1974a], Some convergence theorems in Banach algebras, Pacific J. Math. 52, 467-473.
  • J. J. Koliha [1974b], Power convergence and pseudoinverses of operators in Banach spaces, J. Math. Anal. Appl. 48, 446-469.
  • J. Korevaar [1948], Entire functions of exponential type, Math. Centrum Amsterdam, Rapport ZW 1948-011, 10 pp. (in Dutch).
  • J. Korevaar [1949a], Functions of exponential type bounded on sequences of points, Ann. Soc. Polon. Math. 22, 207-234.
  • J. Korevaar [1949b], A simple proof of a theorem of Pólya, Simon Stevin 26, 81-89.
  • E. Landau [1946], Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Chelsea, New York.
  • D. C. Lay [1970], Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184, 197-214.
  • G. K. Leaf [1963], A spectral theory for a class of linear operators, Pacific J. Math. 13, 141-155.
  • L. Leau [1899], Recherches sur les singularités d'une fonction définie par un développement de Taylor, J. Math. Pures Appl. 5, 365-425.
  • E. Le Roy [1900], Sur les séries divergentes et les fonctions définies par un développement de Taylor, Ann. Fac. Sci. Toulouse Math. 2, 317-430.
  • B. Ja. Levin [1964], Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence.
  • E. Lindelöf [1905], Le Calcul des Résidus, et ses Applications à la Théorie des Fonctions, Gauthier-Villars, Paris.
  • E. R. Lorch [1941], The integral representation of weakly almost-periodic transformations in reflexive vector spaces, Trans. Amer. Math. Soc. 49, 18-40.
  • C. Lubich and O. Nevanlinna [1991], On resolvent conditions and stability estimates, BIT 31, 293-313.
  • G. Lumer [1961], Semi-inner-product spaces, Trans. Amer. Math. Soc. 100, 29-43.
  • G. Lumer [1964], Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25, 75-85.
  • G. Lumer [1971], Bounded groups and a theorem of Gelfand, Rev. Un. Mat. Argentina 25, 239-245.
  • G. Lumer and R. S. Phillips [1961], Dissipative operators in a Banach space, Pacific J. Math. 11, 679-698.
  • Yu. I. Lyubich and Vũ Quôc Phóng [1988], Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88, 37-42.
  • A. I. Markushevich [1976], Selected Chapters in the Theory of Analytic Functions, Nauka, Moscow (in Russian).
  • M. Mbekhta et J. Zemánek [1993], Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317, 1155-1158.
  • C. A. McCarthy [1971], A strong resolvent condition does not imply power-boundedness, Chalmers Institute of Technology and the University of Göteborg, Preprint no. 15, Göteborg.
  • C. A. McCarthy and J. Schwartz [1965], On the norm of a finite Boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18, 191-201.
  • P. Meyer-Nieberg [1991], Banach Lattices, Springer, Berlin.
  • A. Mokhtari [1988], Distance entre éléments d'un semi-groupe continu dans une algèbre de Banach, J. Operator Theory 20, 375-380.
  • V. Müller [1994], Local behaviour of operators, this volume, 251-258.
  • O. Nevanlinna [1993], Convergence of Iterations for Linear Equations, Birkhäuser, Basel.
  • T. Nieminen [1962], A condition for the self-adjointness of a linear operator, Ann. Acad. Sci. Fenn. Ser. A I No. 316, 5 pp.
  • J. I. Nieto [1982], Opérateurs à itérés uniformément bornés, Canad. Math. Bull. 25, 355-360.
  • N. K. Nikol'skiĭ [1977], A Tauberian theorem for the spectral radius, Siberian Math. J. 18, 969-972.
  • K. Noshiro [1960], Cluster Sets, Springer, Berlin.
  • N. Obreschkoff [1934], Lösung der Aufgabe 106, Jahresber. Deutsch. Math.-Verein. 43, 2. Abt., 13-15.
  • R. E. A. C. Paley and N. Wiener [1934], Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York.
  • A. Pazy [1983], Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York.
  • D. Petz [1994], A survey of certain trace inequalities, this volume, 287-298.
  • G. Pólya [1931a], Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 40, 2. Abt., 80.
  • G. Pólya [1931b], Aufgabe 106, ibid., 81.
  • G. Pólya [1974], Collected Papers, Vol. I, Singularities of Analytic Functions, R. P. Boas (ed.), The MIT Press, Cambridge, Mass.
  • G. Pólya und G. Szegö [1964], Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin.
  • A. Pringsheim [1929], Kritisch-historische Bemerkungen zur Funktionentheorie, Sitzungsber. Bayer. Akad. Wiss. München, Math.-Natur. Abt., 95-124.
  • A. Pringsheim [1932], Vorlesungen über Funktionenlehre II.2, Teubner, Leipzig.
  • I. I. Privalov [1950], Boundary Properties of Analytic Functions, GITTL, Moscow (in Russian).
  • D. Przeworska-Rolewicz and S. Rolewicz [1987], The only continuous Volterra right inverses in $C_c[0,1]$ of the operator d/dt are $∫_a^t$, Colloq. Math. 51, 281-285.
  • V. Pták [1976], The spectral radii of an operator and its modulus, Comment. Math. Univ. Carolin. 17, 273-279.
  • T. Pytlik [1987], Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51, 287-294.
  • H. Radjavi and P. Rosenthal [1973], Invariant Subspaces, Springer, Berlin.
  • M. Reed and B. Simon [1972], Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis, Academic Press, New York.
  • R. Remmert [1991], Theory of Complex Functions, Springer, New York.
  • R. K. Ritt [1953], A condition that $lim_{n→∞} n^{-1} T^n = 0$, Proc. Amer. Math. Soc. 4, 898-899.
  • S. Rolewicz [1969], On orbits of elements, Studia Math. 32, 17-22.
  • H. C. Rönnefarth [1993], Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, Berlin, 77 pp.
  • G. Sansone [1959], Orthogonal Functions, Interscience, New York.
  • R. Sato [1979], The Hahn-Banach theorem implies Sine's mean ergodic theorem, Proc. Amer. Math. Soc. 77, 426.
  • R. Sato [1981], On a mean ergodic theorem, ibid. 83, 563-564.
  • H. H. Schaefer [1974], Banach Lattices and Positive Operators, Springer, Berlin.
  • C. Schmoeger [1993], On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117, 715-719.
  • S. L. Segal [1981], Nine Introductions in Complex Analysis, North-Holland, Amsterdam.
  • S. M. Shah [1946], On the singularities of a class of functions on the unit circle, Bull. Amer. Math. Soc. 52, 1053-1056.
  • S.-Y. Shaw [1980], Ergodic projections of continuous and discrete semigroups, Proc. Amer. Math. Soc. 78, 69-76.
  • A. L. Shields [1978], On Möbius bounded operators, Acta Sci. Math. (Szeged) 40, 371-374.
  • G. E. Shilov [1950], On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72, 641-644 (in Russian).
  • V. S. Shul'man [1994], Invariant subspaces and spectral mapping theorems, this volume, 313-325.
  • A. M. Sinclair [1971], The norm of a Hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28, 446-450.
  • R. Sine [1969], A note on rays at the identity operator, ibid. 23, 546-547.
  • R. Sine [1970], A mean ergodic theorem, ibid. 24, 438-439.
  • B. M. Solomyak [1982], The existence of invariant subspaces for operators with nonsymmetric growth of the resolvent, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 107, 204-208, 233-234 (in Russian).
  • B. M. Solomyak [1983], Calculuses, annihilators and hyperinvariant subspaces, J. Operator Theory 9, 341-370.
  • J. G. Stampfli [1967], An extreme point theorem for inverses in a Banach algebra with identity, Proc. Cambridge Philos. Soc. 63, 993-994.
  • J. G. Stampfli and J. P. Williams [1968], Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20, 417-424.
  • M. H. Stone [1948], On a theorem of Pólya, J. Indian Math. Soc. 12, 1-7.
  • J. C. Strikwerda [1989], Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, Pacific Grove, Calif.
  • J. C. Strikwerda and B. A. Wade [1991], Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145, 89-106.
  • A. Święch [1990], Spectral characterization of operators with precompact orbit, Studia Math. 96, 277-282; 97, 266.
  • G. Szegö [1934], Lösung der Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 43, 2. Abt., 10-11.
  • G. Szegö [1959], Orthogonal Polynomials, Amer. Math. Soc., New York.
  • B. Sz.-Nagy [1947], On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11, 152-157.
  • A. E. Taylor and D. C. Lay [1980], Introduction to Functional Analysis, Wiley, New York.
  • E. C. Titchmarsh [1939], The Theory of Functions, Oxford University Press.
  • F. G. Tricomi [1955], Vorlesungen über Orthogonalreihen, Springer, Berlin.
  • L. Tschakaloff [1934], Zweite Lösung der Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 43, 2. Abt., 11-13.
  • G. Valiron [1925], Sur la formule d'interpolation de Lagrange, Bull. Sci. Math. 49, 181-192, 203-224.
  • G. Valiron [1954], Fonctions Analytiques, Presses Universitaires de France, Paris.
  • J. A. Van Casteren [1985], Generators of Strongly Continuous Semigroups, Pitman, London.
  • I. Vidav [1956], Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66, 121-128.
  • I. Vidav [1982], Linear Operators in Banach Spaces, Društvo Matematikov, Fizikov in Astronomov SR Slovenije, Ljubljana (in Slovenian).
  • Vũ Quôc Phóng [1992], A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115, 1023-1024.
  • Vũ Quôc Phóng [1993], Semigroups with nonquasianalytic growth, Studia Math. 104, 229-241.
  • H.-D. Wacker [1985], Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44, 539-546.
  • L. J. Wallen [1967], On the magnitude of $x^n - 1$ in a normed algebra, Proc. Amer. Math. Soc. 18, 956.
  • J. Wermer [1952], The existence of invariant subspaces, Duke Math. J. 19, 615-622.
  • D. V. Widder [1941], The Laplace Transform, Princeton University Press, Princeton.
  • S. Wigert [1900], Sur les fonctions entières, Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar, Stockholm, No. 8, 1001-1011.
  • W. Wils [1969], On semigroups near the identity, Proc. Amer. Math. Soc. 21, 762-763.
  • F. Wolf [1957], Operators in Banach space which admit a generalized spectral decomposition, Indag. Math. 19, 302-311.
  • N. J. Young [1978], Analytic programmes in matrix algebras, Proc. London Math. Soc. 36, 226-242.
  • B. Zalar [1993], History of the Vidav theorem, Obzornik Mat. Fiz. 40, 9-14 (in Slovenian).
  • M. Zarrabi [1993], Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier (Grenoble) 43, 251-263.
  • M. Zarrabi [to appear], Spectral synthesis and applications to C₀-groups, J. Austral. Math. Soc. Ser. A.
  • J. Zemánek [à paraître], Sur les itérations des opérateurs, Publ. Math. Univ. Pierre et Marie Curie, Séminaire d'Initiation à l'Analyse.
  • X.-D. Zhang [1992], Two simple proofs of a theorem of Schaefer, Wolff and Arendt
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv30z1p369bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.