Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland
Bibliografia
[1] B. Aniszczyk, R. Frankiewicz and C. Ryll-Nardzewski, An example of a nonseparable Banach algebra without nonseparable commutative subalgebras, Studia Math. 93 (1989), 287-289.
[2] C. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc. 6 (1955), 970-972.
[3] R. G. Douglas and C. Pearcy, von Neumann algebras with a single generator, Michigan Math. J. 16 (1969), 21-26.
[4] R. C. James, A nonreflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.
[5] B. S. Mityagin and I. Ts. Èdelshteĭn, Homotopy type of linear groups for two classical Banach spaces, Funktsional. Anal. i Prilozhen. 4 (3) (1970), 61-72 (in Russian).
[6] V. Müller and W. Żelazko, B(X) is generated in strong topology by two of its elements, Czechoslovak Math. J. 39 (114) (1989), 486-489.
[7] E. A. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Quadratic operators and invariant subspaces, Studia Math. 88 (1988), 263-268.
[8] C. L. Olsen and W. R. Zame, Some C*-algebras with single generator, Trans. Amer. Math. Soc. 215 (1976), 205-217.
[9] C. Pearcy, W*-algebras with a single generator, Proc. Amer. Math. Soc. 13 (1962), 831-832.
[10] C. Pearcy, On certain von Neumann algebras which are generated by partial isometries, ibid. 15 (1964), 393-395.
[11] T. Saitô, On generators of von Neumann algebras, Michigan Math. J. 15 (1968), 373-376.
[12] P. Šemrl, On algebraic generation of B(X) by two subalgebras with square zero, Studia Math. 97 (1991), 139-142.
[13] N. Suzuki and T. Saitô, On the operators which generate continuous von Neumann algebras, Tôhoku Math. J. (2) 15 (1963), 277-280.
[14] D. M. Topping, UHF algebras are singly generated, Math. Scand. 22 (1968), 224-226 (1969).
[15] A. Wilansky, Subalgebras of B(X), Proc. Amer. Math. Soc. 22 (1971), 355-360.
[16] W. Wogen, On generators for von Neumann algebras, Bull. Amer. Math. Soc. 75 (1969), 95-99.
[17] W. Żelazko, B(H) is generated by two of its abelian subalgebras, in: Invariant Subspaces and Allied Topics, Narosa Publ. House, 1990, 144-146.
[18] W. Żelazko, Algebraic generation of B(X) by two subalgebras of square zero, Studia Math. 90 (1988), 205-212.
[19] W. Żelazko, B(X) is generated in strong operator topology by two subalgebras with square zero, Proc. Roy. Irish Acad. Sect. A 88 (1988), 19-21.
[20] W. Żelazko, Concerning generation of B(X) by two subalgebras with square zero, Funct. Approx. Comment. Math., to appear.