ArticleOriginal scientific text

Title

The boundary behaviour of Sp-valued functions analytic in the half-plane with nonnegative imaginary part

Authors 1

Affiliations

  1. Department of Mathematical Physics, Faculty of Physics, St. Petersburg University, St. Petersgoff, Ulyanovskaya 1, 198904 St. Petersburg, Russia

Bibliography

  1. K. Asano, Notes on Hilbert transforms of vector valued functions in the complex plane and their boundary values, Publ. Res. Inst. Math. Sci. 13 (1967), 572-577.
  2. F. V. Atkinson, Discrete and Continuous Boundary Value Problems, Russian edition, Mir, Moscow, 1968 (additional chapters devoted to R-functions written by M. G. Kreĭn and I. Kats).
  3. M. S. Birman and S. B. Entina, A stationary approach to abstract scattering theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 401-430 (in Russian); English transl. in Math. USSR-Izv. 1 (1967).
  4. M. S. Birman and D. R. Yafaev, Spectral properties of the scattering matrix, Algebra i Analiz 4 (6) (1992), 1-27 (in Russian).
  5. J. Bourgain, Vector valued singular integrals and the H¹-BMO duality, Israel Sem. Geom. Aspects Funct. Anal. (1983/84), XVI, Tel Aviv Univ., 1984, 23 pp.
  6. J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986), 501-515.
  7. A. V. Bukhvalov, Continuity of operators acting in spaces of vector-valued functions, applications to the theory of bases, Zap. Nauchn. Sem. LOMI 157 (1987), 5-22 (in Russian).
  8. D. L. Burkholder, Martingale transforms and the geometry of Banach space, in: Lecture Notes in Math. 860, Springer, 1981, 35-50.
  9. D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. Harmonic Anal. in Honor of A. Zygmund (Chicago, 1981), Wadsworth, Belmont, Calif., 1983, 270-286.
  10. L. D. Faddeev, On the Friedrichs model in the theory of perturbations of the continuous spectrum, Trudy Mat. Inst. Steklov. 73 (1964), 292-313 (in Russian); English transl. in Amer. Math. Soc. Transl. (2) 62 (1967).
  11. I. Ts. Gokhberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence, R.I., 1969.
  12. I. Ts. Gokhberg and M. G. Kreĭn, The Theory of Volterra Operators in a Hilbert Space, Amer. Math. Soc., Providence, R.I., 1970.
  13. J. A. Gutierrez and H. E. Lacey, On the Hilbert transform for Banach valued functions, in: Lecture Notes in Math. 939, Springer, 1982, 73-80.
  14. T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.
  15. P. Koosis, Introduction to Hp-Spaces, Cambridge Univ. Press, 1980.
  16. V. I. Matsaev and Yu. A. Palant, On the powers of a bounded dissipative operator, Ukrain. Mat. Zh. 14 (1962), 329-337 (in Russian).
  17. S. N. Naboko, A functional model of perturbation theory and its applications in scattering theory, Trudy Mat. Inst. Steklov. 147 (1980), 84-114 (in Russian); English transl. in Proc. Steklov Inst. Math. 1981, (2).
  18. S. N. Naboko, On conditions for the existence of the wave operators in the nonselfadjoint case, in: Probl. Mat. Fiz. 12, Leningrad Univ., 1987, 132-155 (in Russian).
  19. S. N. Naboko, On the boundary values of analytic operator-valued functions with positive imaginary part, Zap. Nauchn. Sem. LOMI 157 (1987), 55-69 (in Russian).
  20. S. N. Naboko, Uniqueness theorems for operator-valued functions with positive imaginary part and the singular spectrum in the selfadjoint Friedrichs model, Ark. Mat. 25 (1987), 115-140.
  21. S. N. Naboko, Nontangential boundary values of operator-valued R-functions in a half-plane, Algebra i Analiz 1 (5) (1989), 197-222 (in Russian); English transl.: Leningrad Math. J. 1 (5) (1990), 1255-1278.
  22. B. S. Pavlov and L. D. Faddeev, Zero sets of operator functions with a positive imaginary part, in: Lecture Notes in Math. 1043, Springer, 1984, 124-128.
  23. B. S. Pavlov and S. V. Petras, On the singular spectrum of a weakly perturbed multiplication operator, Funktsional. Anal. i Prilozhen. 4 (2) (1970), 54-61 (in Russian); English transl. in Functional Anal. Appl. 4 (1970).
  24. J. L. Rubio de Francia, Fourier series and Hilbert transforms with values in UMD Banach spaces, Studia Math. 81 (1985), 95-105.
  25. R. Ryan, Boundary values of analytic vector valued functions, Proc. Nederl. Akad. Wetensch. Ser. A 65 (1962), 558-572.
  26. J. Schwartz, A remark on inequalities of Calderón-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785-799.
  27. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  28. B. Sz.-Nagy and C. Foiaş, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Masson, Paris, 1967.
  29. V. F. Veselov and S. N. Naboko, The determinant of a characteristic function and the singular spectrum of a nonselfadjoint operator, Mat. Sb. 129 (171) (1986), 20-29 (in Russian); English transl. in Math. USSR-Sb. 57 (1987).
Pages:
277-285
Main language of publication
English
Published
1994
Exact and natural sciences