ArticleOriginal scientific text

Title

Where to find the image of a derivation

Authors 1

Affiliations

  1. Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

Abstract

With this paper, we intend to provide an overview of some recent work on a problem on unbounded derivations of Banach algebras that still defies solution, the non-commutative Singer-Wermer conjecture. In particular, we discuss several global as well as local properties of derivations entailing quasinilpotency in the image.

Bibliography

  1. C. Apostol, Inner derivations with closed range, Rev. Roumaine Math. Pures Appl. 21 (1976), 242-265.
  2. C. Apostol and J. G. Stampfli, On derivation ranges, Indiana Univ. Math. J. 25 (1976), 857-869.
  3. J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math. 35 (1983), 300-310.
  4. M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), 501-510.
  5. M. Brešar, On a generalization of the notion of centralizing mappings, ibid. 114 (1992), 641-649.
  6. M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162.
  7. M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.
  8. M. Brešar and J. Vukman, Derivations on noncommutative Banach algebras, Arch. Math. (Basel) 59 (1992), 363-370.
  9. C.-L. Chuang and T.-K. Lee, Invariance of minimal prime ideals under derivations, Proc. Amer. Math. Soc. 113 (1991), 613-616.
  10. J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. 16 (1977), 493-500.
  11. H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183.
  12. J. Dixmier, Algèbres envellopantes, Cahier Sci. 27, Gauthier-Villars, Paris, 1974.
  13. C. K. Fong and A. R. Sourour, On the operator identity AkXBk0, Canad. J. Math. 31 (1979), 845-857.
  14. R. V. Garimella, On nilpotency of the separating ideal of a derivation, Proc. Amer. Math. Soc. 117 (1993), 167-174.
  15. K. R. Goodearl and R. B. Warfield, Primitivity in differential operator rings, Math. Z. 180 (1982), 503-524.
  16. P. R. Halmos, Commutators of operators, II, Amer. J. Math. 76 (1954), 191-198.
  17. N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. 36 (1935), 875-881.
  18. B. E. Johnson, Continuity of derivations on commutative Banach algebras, Amer. J. Math. 91 (1969), 1-10.
  19. B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, ibid. 90 (1968), 1067-1073.
  20. I. Kaplansky, Functional analysis, in: Some Aspects of Analysis and Probability, Surveys Appl. Math. 4, New York, 1958, 1-34.
  21. D. C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc. 8 (1957), 535-536.
  22. M. Mathieu, Is there an unbounded Kleinecke-Shirokov theorem?, Sem.ber. Funkt.anal. 18, Tübingen, 1990, 137-143.
  23. M. Mathieu, On the range of centralising derivations, preprint, 1991.
  24. M. Mathieu, Posner's second theorem deduced from the first, Proc. Amer. Math. Soc. 114 (1992), 601-602.
  25. M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), 469-474.
  26. M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London Math. Soc. 24 (1992), 485-487.
  27. G. J. Murphy, Aspects of the theory of derivations, this volume, 267-275.
  28. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
  29. V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211.
  30. C. R. Putnam, On the spectra of commutators, Proc. Amer. Math. Soc. 5 (1954), 929-931.
  31. V. Runde, Automatic continuity of derivations and epimorphisms, Pacific J. Math. 147 (1991), 365-374.
  32. V. Runde, Problems in automatic continuity, Ph.D. Thesis, Univ. California, Berkeley, 1993.
  33. V. Runde, Range inclusion results for derivations on noncommutative Banach algebras, Studia Math. 105 (1993), 159-172.
  34. G. Shilov, On a property of rings of functions, Dokl. Akad. Nauk SSSR 58 (1947), 985-988 (in Russian).
  35. F. V. Shirokov, Proof of a conjecture of Kaplansky, Uspekhi Mat. Nauk. 11 (1956), 167-168 (in Russian).
  36. A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170.
  37. I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
  38. J. G. Stampfli, On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120.
  39. M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460.
  40. M. P. Thomas, Primitive ideals and derivations on non-commutative Banach algebras, Pacific J. Math. 159 (1993), 139-152.
  41. Yu. V. Turovskiĭ and V. S. Shul'man, Conditions for massiveness of the range of the derivation of a Banach algebra and associated differential operators, Math. Notes 42 (1987), 669-674.
  42. I. Vidav, Über eine Vermutung von Kaplansky, Math. Z. 62 (1955), 330.
  43. J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52.
  44. J. Vukman, On derivations in prime rings and Banach algebras, ibid. 116 (1992), 877-884.
  45. J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. 26 (1991), 83-88.
  46. H. Wielandt, Über die Unbeschränktheit der Operatoren der Quantenmechanik, Math. Ann. 121 (1949/50), 21.
  47. J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279.
  48. A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738-739.
  49. B. Yood, Continuous homomorphisms and derivations on Banach algebras, in: F. Greenleaf and D. Gulick (eds.), Banach Algebras and Several Complex Variables, Contemp. Math. 32, Amer. Math. Soc., Providence, R.I., 1984, 279-284.
Pages:
237-249
Main language of publication
English
Published
1994
Exact and natural sciences