[4] H. Bercovici and L. Kérchy, On the spectra of $C_{11}$-contractions, Proc. Amer. Math. Soc. 95 (1985), 412-418.
[5] H. Bercovici and K. Takahashi, On the reflexivity of contractions on Hilbert space, J. London Math. Soc. (2) 32 (1985), 149-156.
[6] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
[7] M. Day, Means for bounded functions and ergodicity of the bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291.
[8] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93.
[9] N. Dunford and J. Schwartz, Linear Operators. II, Interscience, New York, 1963.
[10] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790.
[11] P. R. Halmos, On Foguel's answer to Nagy's question, ibid., 791-793.
[12] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
[13] E. Hewitt and K. Ross, Abstract Harmonic Analysis. I, Springer, Berlin, 1963.
[14] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957.
[15] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686.
[16] L. Kérchy, A description of invariant subspaces of $C_{11}$-contractions, J. Operator Theory 15 (1986), 327-344.
[17] L. Kérchy, Contractions being weakly similar to unitaries, in: Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel, 1986, 187-200.
[18] L. Kérchy, On the spectra of contractions belonging to special classes, J. Funct. Anal. 67 (1986), 153-166.
[19] L. Kérchy, On the residual parts of completely non-unitary contractions, Acta Math. Hungar. 50 (1987), 127-145.
[20] L. Kérchy, Invariant subspaces of $C_{1·}$-contractions with non-reductive unitary extensions, Bull. London Math. Soc. 19 (1987), 161-166.
[21] L. Kérchy, On a conjecture of Teodorescu and Vasyunin, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, Basel, 1988, 169-172.
[22] L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), 173-188.
[23] L. Kérchy, On the functional calculus of contractions with nonvanishing unitary asymptotes, Michigan Math. J. 37 (1990), 323-338.
[24] L. Kérchy, On the reducing essential spectra of contractions, Acta Sci. Math. (Szeged) 57 (1993), 175-198.
[25] N. K. Nikolskiĭ and V. I. Vasyunin, A unified approach to function models, and the transcription problem, in: Oper. Theory: Adv. Appl. 41, Birkhäuser, Basel, 1989, 405-434.
[26] V. V. Peller, Estimates of functions of power bounded operators on Hilbert space, J. Operator Theory 7 (1982), 341-372.
[27] V. Pták, Construction of dilations, Exposition. Math. 10 (1992), 151-170.
[28] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York, 1973.
[29] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.
[30] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[31] N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580.
[32] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
[33] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
[34] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, ibid. 15 (1953), 87-92.
[35] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland and Akadémiai Kiadó, Amsterdam-Budapest, 1970.
[36] K. Takahashi, The reflexivity of contractions with nonreductive *-residual parts, Michigan Math. J. 34 (1987), 153-159.
[37] W. R. Wogen, On reflexivity and quasisimilarity, preprint.