PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1994 | 30 | 1 | 191-201
Tytuł artykułu

Unitary asymptotes of Hilbert space operators

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.
Słowa kluczowe
Rocznik
Tom
30
Numer
1
Strony
191-201
Opis fizyczny
Daty
wydano
1994
Twórcy
  • Bolyai Institute, Attila József University, Aradi vértanúk tere 1, 6720 Szeged, Hungary
Bibliografia
  • [1] S. Banach, Théorie des Opérations Linéaires, Chelsea, New York, 1955.
  • [2] H. Bercovici, Operator Theory and Arithmetic in $H^∞$, Math. Surveys Monographs 26, Amer. Math. Soc., Providence, R.I., 1988.
  • [3] H. Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), 55-64.
  • [4] H. Bercovici and L. Kérchy, On the spectra of $C_{11}$-contractions, Proc. Amer. Math. Soc. 95 (1985), 412-418.
  • [5] H. Bercovici and K. Takahashi, On the reflexivity of contractions on Hilbert space, J. London Math. Soc. (2) 32 (1985), 149-156.
  • [6] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
  • [7] M. Day, Means for bounded functions and ergodicity of the bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291.
  • [8] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93.
  • [9] N. Dunford and J. Schwartz, Linear Operators. II, Interscience, New York, 1963.
  • [10] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790.
  • [11] P. R. Halmos, On Foguel's answer to Nagy's question, ibid., 791-793.
  • [12] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
  • [13] E. Hewitt and K. Ross, Abstract Harmonic Analysis. I, Springer, Berlin, 1963.
  • [14] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957.
  • [15] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686.
  • [16] L. Kérchy, A description of invariant subspaces of $C_{11}$-contractions, J. Operator Theory 15 (1986), 327-344.
  • [17] L. Kérchy, Contractions being weakly similar to unitaries, in: Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel, 1986, 187-200.
  • [18] L. Kérchy, On the spectra of contractions belonging to special classes, J. Funct. Anal. 67 (1986), 153-166.
  • [19] L. Kérchy, On the residual parts of completely non-unitary contractions, Acta Math. Hungar. 50 (1987), 127-145.
  • [20] L. Kérchy, Invariant subspaces of $C_{1·}$-contractions with non-reductive unitary extensions, Bull. London Math. Soc. 19 (1987), 161-166.
  • [21] L. Kérchy, On a conjecture of Teodorescu and Vasyunin, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, Basel, 1988, 169-172.
  • [22] L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), 173-188.
  • [23] L. Kérchy, On the functional calculus of contractions with nonvanishing unitary asymptotes, Michigan Math. J. 37 (1990), 323-338.
  • [24] L. Kérchy, On the reducing essential spectra of contractions, Acta Sci. Math. (Szeged) 57 (1993), 175-198.
  • [25] N. K. Nikolskiĭ and V. I. Vasyunin, A unified approach to function models, and the transcription problem, in: Oper. Theory: Adv. Appl. 41, Birkhäuser, Basel, 1989, 405-434.
  • [26] V. V. Peller, Estimates of functions of power bounded operators on Hilbert space, J. Operator Theory 7 (1982), 341-372.
  • [27] V. Pták, Construction of dilations, Exposition. Math. 10 (1992), 151-170.
  • [28] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York, 1973.
  • [29] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.
  • [30] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
  • [31] N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580.
  • [32] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
  • [33] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
  • [34] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, ibid. 15 (1953), 87-92.
  • [35] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland and Akadémiai Kiadó, Amsterdam-Budapest, 1970.
  • [36] K. Takahashi, The reflexivity of contractions with nonreductive *-residual parts, Michigan Math. J. 34 (1987), 153-159.
  • [37] W. R. Wogen, On reflexivity and quasisimilarity, preprint.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv30z1p191bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.