ArticleOriginal scientific text

Title

Hyperinvariant subspaces of operators on Hilbert spaces

Authors 1, 2

Affiliations

  1. Faculty of Mathematics and Physics, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
  2. Department of Mathematics, Faculty of Electrical Engineering, Slovak Technical University, 81219 Bratislava, Slovakia

Bibliography

  1. M. Barraa, Sous-espaces hyperinvariants d'un opérateur nilpotent sur un espace de Banach, J. Operator Theory 21 (1989), 315-321.
  2. M. Benlarbi Delaï et B. Charles, Description de Alg Lat A pour un opérateur A algébrique, Linear Algebra Appl. 187 (1993), 105-108.
  3. H. Bercovici, C₀-Fredholm operators II, Acta Sci. Math. (Szeged) 42 (1980), 3-42.
  4. H. Bercovici, Operator Theory and Arithmetic in H, Math. Surveys Monographs 26, Providence, R.I., 1988.
  5. H. Bercovici, C. Foiaş and B. Sz.-Nagy, Reflexive and hyper-reflexive operators of class C₀, Acta Sci. Math. (Szeged) 43 (1981), 5-13.
  6. H. Bercovici and L. Kérchy, Quasisimilarity and properties of the commutant of C11 contractions, ibid. 45 (1983), 67-74.
  7. L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810-822.
  8. J. B. Conway and P. Y. Wu, The splitting of Q(T₁ ⊕ T₂) and related questions, Indiana Univ. Math. J. 26 (1977), 41-56.
  9. J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
  10. J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93.
  11. R. G. Douglas, On the hyperinvariant subspaces for isometries, Math. Z. 107 (1968), 297-300.
  12. Š. Drahovský and M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohem. 118 (1993), 249-254.
  13. P. A. Fillmore, D. A. Herrero and W. F. Longstaff, The hyperinvariant subspace lattice of a linear transformation, Linear Algebra Appl. 17 (1977), 125-132.
  14. P. R. Halmos, Eigenvectors and adjoints, ibid. 4 (1971), 11-15.
  15. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
  16. V. V. Kapustin, Reflexivity of operators: general methods and a criterion for almost isometric contractions, Algebra i Analiz 4 (2) (1992), 141-160 (in Russian); English transl.: St. Petersburg Math. J. 4 (1993), 319-335.
  17. V. V. Kapustin and A. V. Lipin, Operator algebras and invariant subspace lattices. I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), 23-56 (in Russian).
  18. L. Kérchy, On the commutant of C11-contractions, Acta Sci. Math. (Szeged) 43 (1981), 15-26.
  19. D. R. Larson and W. R. Wogen, Reflexivity properties of T ⊕ 0, J. Funct. Anal. 92 (1990), 448-467.
  20. S.-C. Ong, Remarks on invariant subspaces of finite dimensional operators, Linear Algebra Appl. 42 (1982), 99-101.
  21. S.-C. Ong, What kind of operators have few invariant subspaces?, ibid. 95 (1987), 181-185.
  22. S.-C. Ong, On equality of few invariant subspace lattices of operators, ibid. 144 (1991), 23-27.
  23. V. S. Shul'man, The Fuglede-Putnam theorem and reflexivity, Dokl. Akad. Nauk SSSR 210 (1973), 543-544 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 784-786.
  24. S. O. Sickler, The invariant subspaces of almost unitary operators, Indiana Univ. Math. J. 24 (1975), 636-649.
  25. D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Nauka i Tekhnika, Minsk, 1966 (in Russian); English transl.: Academic Press, New York, 1968.
  26. B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, and Akadémiai Kiadó, Budapest, 1970.
  27. K. Takahashi, Double commutants of operators quasi-similar to normal operators, Proc. Amer. Math. Soc. 92 (1984), 404-406.
  28. M. Uchiyama, Hyperinvariant subspaces of operators of class C₀(N), Acta Sci. Math. (Szeged) 39 (1977), 179-184.
  29. M. Uchiyama, Hyperinvariant subspaces for contractions of class C·0, Hokkaido Math. J. 6 (1977), 260-272.
  30. P. Y. Wu, The hyperinvariant subspace lattice of the contraction of class C·0, Proc. Amer. Math. Soc. 72 (1978), 527-530.
  31. P. Y. Wu, Hyperinvariant subspaces of C11 contractions, ibid. 75 (1979), 53-58.
  32. P. Y. Wu, Hyperinvariant subspaces of C11 contractions, II, Indiana Univ. Math. J. 27 (1978), 805-812.
  33. P. Y. Wu, Hyperinvariant subspaces of weak contractions, Acta Sci. Math. (Szeged) 41 (1979), 259-266.
  34. P. Y. Wu, Which linear transformations have isomorphic hyperinvariant subspace lattices?, Linear Algebra Appl. 169 (1992), 163-178.
  35. M. Zajac, Hyperinvariant subspace lattice of some C₀-contractions, Math. Slovaca 31 (1981), 397-404.
  36. M. Zajac, Hyperinvariant subspace lattice of weak contractions, ibid. 33 (1983), 75-80.
  37. M. Zajac, Hyperinvariant subspaces of weak contractions, in: Oper. Theory: Adv. Appl. 14, Birkhäuser, 1984, 291-299.
  38. M. Zajac, Hyperinvariant subspace lattice of isometries, Math. Slovaca 37 (1987), 291-297.
  39. M. Zajac, Hyperinvariant subspaces of weak contractions, II, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, 1988, 317-322.
  40. M. Zajac, On the singular unitary part of a contraction, Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384.
  41. M. Zajac, Hyper-reflexivity of isometries and weak contractions, J. Operator Theory 25 (1991), 43-51.
Pages:
117-126
Main language of publication
English
Published
1994
Exact and natural sciences