PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1994 | 30 | 1 | 101-115
Tytuł artykułu

Operator inequalities, geodesics and interpolation

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
30
Numer
1
Strony
101-115
Opis fizyczny
Daty
wydano
1994
Twórcy
  • Instituto Argentino de Matemática, Viamonte 1636, 1055 Buenos Aires, Argentina
Bibliografia
  • [1] W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71.
  • [2] E. Andruchow, G. Corach, M. Milman and D. Stojanoff, Geodesics and interpolation, preprint.
  • [3] E. Andruchow, G. Corach and D. Stojanoff, A geometric characterization of nuclearity and injectivity, preprint.
  • [4] E. Andruchow, L. A. Fialkow, D. A. Herrero, M. B. Pecuch and D. Stojanoff, Joint similarity orbits with local cross sections, Integral Equations Operator Theory 13 (1990), 1-48.
  • [5] E. Andruchow, L. Recht and D. Stojanoff, The space of spectral measures in a homogeneous reductive space, ibid. 16 (1993), 1-14.
  • [6] E. Andruchow and D. Stojanoff, Nilpotent operators and systems of projections, J. Operator Theory 20 (1988), 359-374.
  • [7] E. Andruchow and D. Stojanoff, Differentiable structure of similarity orbits, ibid. 21 (1989), 349-366.
  • [8] E. Andruchow and D. Stojanoff, Geometry of unitary orbits, ibid. 25 (1991), 25-41.
  • [9] C. J. Atkin, The Finsler geometry of groups of isometries of Hilbert space, J. Austral. Math. Soc. Ser. A 42 (1987), 196-222.
  • [10] C. J. Atkin, The Finsler geometry of certain covering groups of operator groups, Hokkaido Math. J. 18 (1989), 45-77.
  • [11] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976.
  • [12] R. Coifman and S. Semmes, Interpolation of Banach spaces, Perron processes and Yang-Mills, Amer. J. Math. 115 (1993), 243-278.
  • [13] G. Corach, H. Porta and L. Recht, Differential geometry of systems of projections in Banach algebras, Pacific J. Math. 140 (1990), 209-228.
  • [14] G. Corach, H. Porta and L. Recht, The geometry of the spaces of projections in C*-algebras, Adv. in Math. 101 (1993), 59-77.
  • [15] G. Corach, H. Porta and L. Recht, Two C*-algebra inequalities, in: Analysis in Urbana, Proc. Special Year in Modern Analysis at the University of Illinois, E. Berkson and J. Uhl (eds.), Cambridge University Press, 1989, 141-143.
  • [16] G. Corach, H. Porta and L. Recht, The geometry of spaces of selfadjoint invertible elements of a C*-algebra, Integral Equations Operator Theory 16 (1993), 333-359.
  • [17] G. Corach, H. Porta and L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990), 153-158.
  • [18] G. Corach, H. Porta and L. Recht, A geometric interpretation of the inequality $∥e^{X+Y}∥ ≤ ∥e^{X/2}e^Ye^{X/2}∥$, Proc. Amer. Math. Soc. 115 (1992), 229-231.
  • [19] G. Corach, H. Porta and L. Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math. 4 (1993), 193-202.
  • [20] G. Corach, H. Porta and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math., to appear.
  • [21] G. Corach, H. Porta and L. Recht, Differential geometry of spaces of relatively regular operators, Integral Equations Operator Theory 13 (1990), 771-794.
  • [22] R. Curto, Applications of several complex variables to multiparameter spectral theory, in: Surveys of Some Recent Results in Operator Theory, Vol. II, J. B. Conway and B. B. Morrel (eds.), Longman, London, 1988, 25-90.
  • [23] Ch. Davis, The norm of the Schur product operation, Numer. Math. 4 (1962), 343-344.
  • [24] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer, Berlin, 1974.
  • [25] J. Esterle, Polynomial connections between projections in Banach algebras, Linear Algebra Appl. 15 (1983), 253-254.
  • [26] J. Fujii, M. Fujii, T. Furuta and R. Nakamoto, Norm inequalities equivalent to Heinz inequality, Proc. Amer. Math. Soc. 118 (1993), 827-830.
  • [27] J. Fujii, M. Fujii, T. Furuta and R. Nakamoto, Norm inequalities related to McIntosh type inequality, Nihonkai J. Math. 3 (1992), 67-72.
  • [28] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon. 34 (1989), 341-348.
  • [29] M. Fujii and R. Nakamoto, On certain norm inequalities, ibid. 38 (1993), 79-81.
  • [30] T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys. 1 (1989), 135-137.
  • [31] B. Gramsch, Relative Inversion in der Störungstheorie von Operatoren und ψ-Algebren, Math. Ann. 269 (1984), 27-71.
  • [32] U. Haagerup, Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118 (1983), 215-240.
  • [33] P. de la Harpe, Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, Berlin, 1972.
  • [34] J. P. Holmes, The structure of the set of idempotents in a Banach algebra, Illinois J. Math. 36 (1992), 102-115.
  • [35] M. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York, 1969.
  • [36] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205-224.
  • [37] K. Lorentz, On the local structure of the similarity orbits of Jordan elements in operator algebras, Ann. Univ. Sarav. Ser. Math. 2 (3) (1989).
  • [38] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
  • [39] G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41.
  • [40] A. Maestripieri, On the geometry of the set of square roots of elements in C*-algebras, Integral Equations Operator Theory, to appear.
  • [41] E. Makai, Jr. and J. Zemánek, On polynomial connections between projections, Linear Algebra Appl. 126 (1985), 91-94.
  • [42] M. Martin, Projective representations of compact groups in C*-algebras, in: Oper. Theory: Adv. Appl. 43, Birkhäuser, 1990, 237-253.
  • [43] G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1925.
  • [44] H. Porta and L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), 464-466.
  • [45] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8 (1975), 159-170.
  • [46] I. Segal, Notes toward the construction of nonlinear relativistic quantum fields III, Bull. Amer. Math. Soc. 75 (1969), 1390-1395.
  • [47] S. Semmes, Interpolation of Banach spaces, differential geometry and differential equations, Rev. Mat. Iberoamericana 4 (1988), 155-176.
  • [48] S. Semmes, Complex Monge-Ampère and symplectic manifolds, preprint.
  • [49] N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, Princeton, 1951.
  • [50] M. Tremon, Polynômes de degré minimum connectant deux projections dans une algèbre de Banach, Linear Algebra Appl. 64 (1985), 115-132.
  • [51] M. Walter, On the norm of the Schur product, ibid. 79 (1986), 209-213.
  • [52] D. R. Wilkins, The Grassmann manifold of a C*-algebra, Proc. Roy. Irish Acad. 90A (1990), 99-116.
  • [53] J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv30z1p101bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.