ArticleOriginal scientific text
Title
Operator inequalities, geodesics and interpolation
Authors 1
Affiliations
- Instituto Argentino de Matemática, Viamonte 1636, 1055 Buenos Aires, Argentina
Bibliography
- W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71.
- E. Andruchow, G. Corach, M. Milman and D. Stojanoff, Geodesics and interpolation, preprint.
- E. Andruchow, G. Corach and D. Stojanoff, A geometric characterization of nuclearity and injectivity, preprint.
- E. Andruchow, L. A. Fialkow, D. A. Herrero, M. B. Pecuch and D. Stojanoff, Joint similarity orbits with local cross sections, Integral Equations Operator Theory 13 (1990), 1-48.
- E. Andruchow, L. Recht and D. Stojanoff, The space of spectral measures in a homogeneous reductive space, ibid. 16 (1993), 1-14.
- E. Andruchow and D. Stojanoff, Nilpotent operators and systems of projections, J. Operator Theory 20 (1988), 359-374.
- E. Andruchow and D. Stojanoff, Differentiable structure of similarity orbits, ibid. 21 (1989), 349-366.
- E. Andruchow and D. Stojanoff, Geometry of unitary orbits, ibid. 25 (1991), 25-41.
- C. J. Atkin, The Finsler geometry of groups of isometries of Hilbert space, J. Austral. Math. Soc. Ser. A 42 (1987), 196-222.
- C. J. Atkin, The Finsler geometry of certain covering groups of operator groups, Hokkaido Math. J. 18 (1989), 45-77.
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976.
- R. Coifman and S. Semmes, Interpolation of Banach spaces, Perron processes and Yang-Mills, Amer. J. Math. 115 (1993), 243-278.
- G. Corach, H. Porta and L. Recht, Differential geometry of systems of projections in Banach algebras, Pacific J. Math. 140 (1990), 209-228.
- G. Corach, H. Porta and L. Recht, The geometry of the spaces of projections in C*-algebras, Adv. in Math. 101 (1993), 59-77.
- G. Corach, H. Porta and L. Recht, Two C*-algebra inequalities, in: Analysis in Urbana, Proc. Special Year in Modern Analysis at the University of Illinois, E. Berkson and J. Uhl (eds.), Cambridge University Press, 1989, 141-143.
- G. Corach, H. Porta and L. Recht, The geometry of spaces of selfadjoint invertible elements of a C*-algebra, Integral Equations Operator Theory 16 (1993), 333-359.
- G. Corach, H. Porta and L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990), 153-158.
- G. Corach, H. Porta and L. Recht, A geometric interpretation of the inequality
, Proc. Amer. Math. Soc. 115 (1992), 229-231. - G. Corach, H. Porta and L. Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math. 4 (1993), 193-202.
- G. Corach, H. Porta and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math., to appear.
- G. Corach, H. Porta and L. Recht, Differential geometry of spaces of relatively regular operators, Integral Equations Operator Theory 13 (1990), 771-794.
- R. Curto, Applications of several complex variables to multiparameter spectral theory, in: Surveys of Some Recent Results in Operator Theory, Vol. II, J. B. Conway and B. B. Morrel (eds.), Longman, London, 1988, 25-90.
- Ch. Davis, The norm of the Schur product operation, Numer. Math. 4 (1962), 343-344.
- W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer, Berlin, 1974.
- J. Esterle, Polynomial connections between projections in Banach algebras, Linear Algebra Appl. 15 (1983), 253-254.
- J. Fujii, M. Fujii, T. Furuta and R. Nakamoto, Norm inequalities equivalent to Heinz inequality, Proc. Amer. Math. Soc. 118 (1993), 827-830.
- J. Fujii, M. Fujii, T. Furuta and R. Nakamoto, Norm inequalities related to McIntosh type inequality, Nihonkai J. Math. 3 (1992), 67-72.
- J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon. 34 (1989), 341-348.
- M. Fujii and R. Nakamoto, On certain norm inequalities, ibid. 38 (1993), 79-81.
- T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys. 1 (1989), 135-137.
- B. Gramsch, Relative Inversion in der Störungstheorie von Operatoren und ψ-Algebren, Math. Ann. 269 (1984), 27-71.
- U. Haagerup, Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118 (1983), 215-240.
- P. de la Harpe, Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, Berlin, 1972.
- J. P. Holmes, The structure of the set of idempotents in a Banach algebra, Illinois J. Math. 36 (1992), 102-115.
- M. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York, 1969.
- F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205-224.
- K. Lorentz, On the local structure of the similarity orbits of Jordan elements in operator algebras, Ann. Univ. Sarav. Ser. Math. 2 (3) (1989).
- K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
- G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41.
- A. Maestripieri, On the geometry of the set of square roots of elements in C*-algebras, Integral Equations Operator Theory, to appear.
- E. Makai, Jr. and J. Zemánek, On polynomial connections between projections, Linear Algebra Appl. 126 (1985), 91-94.
- M. Martin, Projective representations of compact groups in C*-algebras, in: Oper. Theory: Adv. Appl. 43, Birkhäuser, 1990, 237-253.
- G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1925.
- H. Porta and L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), 464-466.
- W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8 (1975), 159-170.
- I. Segal, Notes toward the construction of nonlinear relativistic quantum fields III, Bull. Amer. Math. Soc. 75 (1969), 1390-1395.
- S. Semmes, Interpolation of Banach spaces, differential geometry and differential equations, Rev. Mat. Iberoamericana 4 (1988), 155-176.
- S. Semmes, Complex Monge-Ampère and symplectic manifolds, preprint.
- N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, Princeton, 1951.
- M. Tremon, Polynômes de degré minimum connectant deux projections dans une algèbre de Banach, Linear Algebra Appl. 64 (1985), 115-132.
- M. Walter, On the norm of the Schur product, ibid. 79 (1986), 209-213.
- D. R. Wilkins, The Grassmann manifold of a C*-algebra, Proc. Roy. Irish Acad. 90A (1990), 99-116.
- J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183.