ArticleOriginal scientific text

Title

On an unconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions

Authors 1, 1

Affiliations

  1. Mathematical Institute of the Czech Academy of Sciences, Žitná 25, CS-11567 Prague 1, Czech Republic

Abstract

A new variational formulation of the linear elasticity problem with Neumann or periodic boundary conditions is presented. This formulation does not require any quotient spaces and is advisable for finite element approximations.

Bibliography

  1. I. Babuška Uncertainties in engineering design: mathematical theory and numerical experience, in: The Optimal Shape, J. Bennett and M. M. Botkin (eds.), Plenum Press, 1986; also in: Technical Note BN-1044, Univ. of Maryland, 1985, 1-35.
  2. I. Hlaváček and J. Nečas, On inequalities of Korn's type, I, Boundary-value problems for elliptic systems of partial differential equations, II, Applications to linear elasticity, Arch. Rational Mech. Anal. 36 (1970), 305-311, 312-334.
  3. M. Křížek, Conforming equilibrium finite element methods for some elliptic plane problems, RAIRO Numer. Anal. 17 (1983), 35-65.
  4. M. Křížek and P. Neittaanmäki, Finite Element Approximation of Variational Problems and Applications, Longman, Harlow 1990.
  5. M. Křížek, P. Neittaanmäki and M. Vondrák, A nontraditional approach for solving the Neumann problem by the finite element method, Mat. Apl. Comput. 11 (1992), 31-40.
  6. D. F. Luenberger, Hyperbolic pairs in the method of conjugate gradients, SIAM J. Appl. Math. 17 (1969), 1263-1267.
  7. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967.
  8. J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction, Elsevier, Amsterdam 1981.
  9. J. Taufer, Lösung der Randwertprobleme für Systeme von linearen Differentialgleichungen, Academia, Prague 1973.
  10. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin 1988.
  11. D. E. Ward, Exact penalties and sufficient conditions for optimality in nonsmooth optimization, J. Optim. Theory Appl. 57 (1988), 485-499.
Pages:
65-77
Main language of publication
English
Published
1994
Exact and natural sciences