ArticleOriginal scientific text

Title

Algebraic approach to domain decomposition

Authors 1

Affiliations

  1. Matematický ústav AV ČR, Žitná 25, 11567 Praha 1, Czech Republic

Abstract

An iterative procedure containing two parameters for solving linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numerical example is given as an illustration.

Keywords

block matrix, domain decomposition, iterative methods

Bibliography

  1. P. Bjørstad and O. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), 1097-1120.
  2. J. Bramble, J. Pasciak and A. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), 361-369.
  3. T. Chan, R. Glowinski, G. A. Meurant, J. Périaux and O. Widlund (eds.), Domain Decomposition Methods, SIAM, Philadelphia 1989.
  4. R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (eds.), First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia 1988.
  5. L. D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math. 55 (1989), 575-598.
  6. M. Práger, An iterative method of alternating type for systems with special block matrices, Appl. Math. 36 (1991), 72-78.
Pages:
207-214
Main language of publication
English
Published
1994
Exact and natural sciences