ArticleOriginal scientific text

Title

Multipliers in Sobolev spaces and exact convergence rate estimates for the finite-difference schemes

Authors 1

Affiliations

  1. University of Belgrade, Faculty of Sciences, Studentski trg 16, POB 550, 11000 Belgrade, Yugoslavia

Abstract

In this paper we present some recent results concerning convergence rate estimates for finite-difference schemes approximating boundary-value problems. Special attention is given to the problem of minimal smoothness of coefficients in partial differential equations necessary for obtaining the results.

Keywords

finite differences, multipliers, boundary-value problems, Sobolev spaces

Bibliography

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
  2. J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with application to Hermite interpolation, Numer. Math. 16 (1971), 362-369.
  3. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam 1978.
  4. T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), 441-463.
  5. B. S. Jovanović, On the convergence of finite-difference schemes for parabolic equations with variable coefficients, Numer. Math. 54 (1989), 395-404.
  6. B. S. Jovanović, Optimal error estimates for finite-difference schemes with variable coefficients, Z. Angew. Math. Mech. 70 (1990), 640-642.
  7. B. S. Jovanović, Convergence of finite-difference schemes for parabolic equations with variable coefficients, ibid. 71 (1991), 647-650.
  8. B. S. Jovanović, Convergence of finite-difference schemes for hyperbolic equations with variable coefficients, ibid. 72 (1992), to appear.
  9. B. S. Jovanović, L. D. Ivanović and E. E. Süli, Convergence of a finite-difference scheme for second-order hyperbolic equations with variable coefficients, IMA J. Numer. Anal. 7 (1987), 39-45.
  10. B. S. Jovanović, L. D. Ivanović and E. E. Süli, Convergence of finite-difference schemes for elliptic equations with variable coefficients, ibid., 301-305.
  11. R. D. Lazarov, On the question of convergence of finite-difference schemes for generalized solutions of the Poisson equation, Differentsial'nye Uravneniya 17 (1981), 1285-1294 (in Russian).
  12. R. D. Lazarov, V. L. Makarov and A. A. Samarskiĭ, Application of exact difference schemes for construction and investigation of difference schemes for generalized solutions, Mat. Sb. 117 (1982), 469-480 (in Russian).
  13. R. D. Lazarov, V. L. Makarov and W. Weinelt, On the convergence of difference schemes for the approximation of solutions uW2m (m > 0.5) of elliptic equations with mixed derivatives, Numer. Math. 44 (1984), 223-232.
  14. V. G. Maz'ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Monographs Stud. Math. 23, Pitman, Boston 1985.
  15. A. A. Samarskiĭ, Theory of Difference Schemes, Nauka, Moscow 1983 (in Russian).
  16. E. Süli, B. Jovanović and L. Ivanović, Finite difference approximations of generalized solutions, Math. Comp. 45 (1985), 319-327.
  17. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag der Wissenschaften, Berlin 1978.
  18. J. Wloka, Partial Differential Equations, Cambridge Univ. Press, 1987.
Pages:
165-173
Main language of publication
English
Published
1994
Exact and natural sciences