ArticleOriginal scientific text

Title

Normal forms in partial modal logic

Authors 1

Affiliations

  1. Institute for Language Technology, nsl & AI, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Abstract

A "partial" generalization of Fine's definition [Fin] of normal forms in normal minimal modal logic is given. This means quick access to complete axiomatizations and decidability proofs for partial modal logic [Thi].

Bibliography

  1. [BaP] J. Barwise and J. Perry, Situations and Attitudes, MIT Press, Cambridge, MA, 1983.
  2. [Bla] S. Blamey, Partial logic, in: Handbook of Philosophical Logic, D. Gabbay and F. Guenthner (eds.), #III, Reidel, Dordrecht 1986, 1-70.
  3. [FaH] R. Fagin and J. Y. Halpern, Belief, awareness and limited reasoning, in : Proc. Ninth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Los Altos 1985, 491-501.
  4. [FaV] R. Fagin and M. Y. Vardi, An internal semantics for modal logic: preliminary report, CSLI Research Notes #85-25, Stanford Univ., 1985.
  5. [Fin] K. Fine, Normal forms in modal logic, Notre Dame J. Formal Logic 16 (1975), 229-237.
  6. [Jas] J. O. M. Jaspars, Theoretical circumscription in partial modal logic, in: Logics in AI, JELIA '90, J. van Eijck (ed.), Lecture Notes in Artificial Intelligence 478, Springer, Heidelberg 1991, 303-318.
  7. [Kam] H. Kamp, A scenic tour through the land of naked infinitives, manuscript, 1983.
  8. [Mus] R. A. Muskens, Meaning and partiality, Ph.D. thesis, Univ. of Amsterdam, 1989.
  9. [Ras] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam 1974.
  10. [Thi] E. G. C. Thijsse, Partial propositional and modal logic; the overall theory, in: Proc. Seventh Amsterdam Colloquium, M. Stokhof and L. Torenvliet (eds.), ITLI, Amsterdam 1990, 555-579.
Pages:
37-50
Main language of publication
English
Published
1993
Exact and natural sciences