ArticleOriginal scientific text

Title

Weak products of universal algebras

Authors 1

Affiliations

  1. Mathematical Institute of the Hungarian Academy of Sciences, Budapest, PF. 127, H-1364, Hungary

Abstract

Weak direct products of arbitrary universal algebras are introduced. The usual notion for groups and rings is a special case. Some universal algebraic properties are proved and applications to cylindric and polyadic algebras are considered.

Keywords

universal algebra, algebraic logic, cylindric algebras

Bibliography

  1. H. Andréka, T. Gergely and I. Németi, Purely algebraic construction of first order logics, preprint of Central Research Institute of Hung. Acad. Sci., Budapest, No. KFKI-73-71 (1973), 46 pp.
  2. H. Andréka, T. Gergely and I. Németi, On universal algebraic construction of logics, Studia Logica 36 (1-2) (1977), 9-47.
  3. H. Andréka and I. Németi, A simple, purely algebraic proof of the completeness of some first order logics, Algebra Universalis 5 (1975), 8-15.
  4. H. Andréka and I. Németi, Formulas and ultraproducts in categories, Beiträge Algebra Geom. 8 (1979), 133-151.
  5. M. A. Arbib and E. G. Manes, Arrows, Structures and Functors: The Categorial Imperative, Academic Press, 1975.
  6. E. K. Van Deuven, J. D. Monk and R. Matatyahu, Some questions about Boolean algebras, preprint, Univ. of Colorado, Boulder, Co., 1979.
  7. S. Eilenberg and M. P. Schützenberger, On pseudovarieties, Adv. in Math. 19 (3) (1976), 413-418.
  8. L. Fuchs, Infinite Abelian Groups, Academic Press, 1970.
  9. S. Givant, The structure of relation algebras generated by relativizations, preprint, Dept. of Math., Mills College, Oakland, Cal., 1991, 152 pp.
  10. G. Grätzer, Universal Algebra, second ed., Springer, Berlin 1979.
  11. L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, North-Holland, Amsterdam 1971 and 1985.
  12. L. Henkin, J. D. Monk, A. Tarski, H. Andréka and I. Németi, Cylindric Set Algebras, Lecture Notes in Math. 883, Springer, Berlin 1981.
  13. I. Malcev, Algebraic Systems, Akademie-Verlag, Berlin 1973.
  14. J. D. Monk, Mathematical Logic, Graduate Texts in Math. 37, Springer, Berlin 1978.
  15. J. D. Monk, On depth of Boolean algebras, lecture at the Math. Inst. Hungar. Acad. Sci., Budapest, December 1978.
  16. J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras, I-II-III, North-Holland, Amsterdam 1989.
  17. I. Németi, Connections between cylindric algebras and initial algebra semantics of CF languages, in: Mathematical Logic in Computer Science (Proc. Coll. Salgótarján 1978), B. Dömölki and T. Gergely (eds.), Colloq. Math. Soc. J. Bolyai 26, North-Holland, Amsterdam 1981, 561-605.
  18. I. Németi and I. Sain, Cone-implicational subcategories and some Birkhoff-type theorems, in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-Holland, Amsterdam 1982, 535-578.
  19. D. Pigozzi, On some operations on classes of algebras, Algebra Universalis 2 (1972), 346-353.
  20. J. Rosický, Concerning equational categories, in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-Holland, Amsterdam 1982.
  21. I. Sain, Weak products for universal algebra and model theory, Diagrammes 8 (1982), S1-S15.
Pages:
311-318
Main language of publication
English
Published
1993
Exact and natural sciences