ArticleOriginal scientific text

Title

Natural dualities for varieties of distributive lattices with a quantifier

Authors 1

Affiliations

  1. Mathematical Institute, Oxford University, 24/29 St Giles, Oxford OX1 3LB, England

Keywords

natural duality, quantifier, free algebra

Bibliography

  1. M. E. Adams and H. A. Priestley, Equational bases for varieties of Ockham algebras, Algebra Universalis, to appear.
  2. G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl. 2, Addison-Wesley, Reading, MA, 1976.
  3. R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991), 188-197.
  4. R. Cignoli, Free Q-distributive lattices, manuscript.
  5. R. Cignoli, S. Lafalce and A. Petrovich, Remarks on Priestley duality for distributive lattices, Order 8 (1991), 299-315.
  6. D. M. Clark and P. H. Krauss, On topological quasi-varieties, Acta Sci. Math. (Szeged) 47 (1983), 3-39.
  7. B. A. Davey, Duality theory on ten dollars a day, in: Proc. SMS Summer School on Algebras and Orders, Montréal 1991, NATO Adv. Study Inst. Ser. 389, 71-111.
  8. B. A. Davey and M. S. Goldberg, The free p-algebra generated by a distributive lattice, Algebra Universalis 11 (1980), 90-100.
  9. B. A. Davey and H. A. Priestley, Generalised piggyback dualities and applications to Ockham algebras, Houston J. Math. 13 (1987), 151-197.
  10. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge Univ. Press, Cambridge 1990.
  11. B. A. Davey and H. A. Priestley, Partition-induced natural dualities for varieties of pseudocomplemented distributive lattices, Discrete Math. 113 (1993), 41-58.
  12. B. A. Davey and H. A. Priestley, Optimal natural dualities, Trans. Amer. Math. Soc., to appear.
  13. B. A. Davey and H. A. Priestley, Optimal dualities for varieties of Heyting algebras, preprint.
  14. B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory (Szeged 1980), A. P. Huhn and E. T. Schmidt (eds.), Colloq. Math. Soc. János Bolyai 33, North-Holland, Amsterdam 1983, 101-275.
  15. B. A. Davey and H. Werner, Piggyback dualities, in: Lectures in Universal Algebra (Szeged 1983), L. Szabó and A. Szendrei (eds.), Colloq. Math. Soc. János Bolyai 43, North-Holland, Amsterdam 1986, 61-83.
  16. B. A. Davey and H. Werner, Piggyback-Dualitäten, Bull. Austral. Math. Soc. 32 (1985), 1-32.
  17. R. Goldblatt, Varieties of complex algebras, Ann. Pure Appl. Logic 44 (1990), 173-242.
  18. P. R. Halmos, Algebraic logic I: monadic algebras, Compositio Math. 12 (1955), 217-249; reproduced in [19].
  19. P. R. Halmos, Algebraic Logic, Chelsea, New York 1962.
  20. G. Hansoul, A duality for Boolean algebras with operators, Algebra Universalis 17 (1983), 34-49.
  21. H. A. Priestley, Ordered sets and duality for distributive lattices, in: Orders, Descriptions and Roles, M. Pouzet and D. Richard (eds.), Ann. Discrete Math. 23, North-Holland, Amsterdam 1984, 39-60.
  22. H. A. Priestley, The determination of subvarieties of certain congruence-% distributive varieties, Algebra Universalis, to appear.
  23. H. A. Priestley, Natural dualities, in: Proc. Birkhoff Symposium 1991, K. Baker and R. Wille (eds.), to appear.
  24. H. A. Priestley and M. P. Ward, A multi-purpose backtracking algorithm, submitted.
Pages:
291-310
Main language of publication
English
Published
1993
Exact and natural sciences