ArticleOriginal scientific text

Title

Finitary axiomatizations of the true relational equations

Authors 1

Affiliations

  1. Department of Mathematics, Iowa State University, Ames, Iowa 50011, U.S.A.

Bibliography

  1. L. H. Chin and A. Tarski, Distributive and modular laws in the arithmetic of relation algebras, Univ. California Publ. Math. (N.S.) 1 (1951), 341-384.
  2. S. Givant, Tarski's development of logic and mathematics based on the calculus of relations, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 361-392.
  3. L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Part II, North-Holland, Amsterdam 1985.
  4. B. Jónsson, Varieties of relation algebras, Algebra Universalis 15 (1982), 273-298.
  5. B. Jónsson, The theory of binary relations, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 245-292.
  6. B. Jónsson and A. Tarski, Boolean algebras with operators, Part II, Amer. J. Math. 74 (1952), 127-162.
  7. R. C. Lyndon, The representation of relational algebras, II, Ann. of Math. (2) 63 (1956), 294-307.
  8. R. D. Maddux, Some sufficient conditions for the representability of relation algebras, Algebra Universalis 8 (1978), 162-172.
  9. R. D. Maddux, Topics in relation algebras, dissertation, Univ. of California, Berkeley 1978.
  10. R. D. Maddux, Some varieties containing relation algebras, Trans. Amer. Math. Soc. 272 (1982), 501-526.
  11. R. D. Maddux, Necessary subalgebras of simple nonintegral semiassociative relation algebras, Algebra Universalis 27 (1990), 544-558.
  12. R. D. Maddux, Pair-dense relation algebras, Trans. Amer. Math. Soc. 328 (1991), 83-131.
  13. R. D. Maddux, Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 361-392.
  14. R. D. Maddux, The origin of relation algebras in the development and axiomatization of the calculus of relations, Studia Logica 50 (1991), 421-455.
  15. R. D. Maddux and A. Tarski, A sufficient condition for the representability of relation algebras, Notices Amer. Math. Soc. 23 (1976), A-477.
  16. R. N. W. McKenzie, A general method for constructing elementary axioms for classes of representable structures, preprint, 1966.
  17. J. D. Monk, On representable relation algebras, Michigan Math. J. 11 (1964), 207-210.
  18. J. D. Monk, Nonfinitizability of classes of representable cylindric algebras, J. Symbolic Logic 34 (1969), 331-343.
  19. A. Tarski and S. Givant, A Formalization of Set Theory without Variables, Amer. Math. Soc., 1987.
  20. Y. Venema, Two-dimensional modal logics for relational algebras and temporal logic of intervals, LP-89-03, Institute for Language, Logic, and Information, Univ. of Amsterdam, 1989.
  21. Y. Venema, Many-dimensional modal logic, dissertation, Univ. of Amsterdam, 1992.
Pages:
201-208
Main language of publication
English
Published
1993
Exact and natural sciences