Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814, 73 Bratislava, Slovakia
Bibliografia
[1] B. A. Bondarenko, Generalized Pascal triangles and pyramids, their fractals, graphs and applications, Fan, Tashkent 1990 (in Russian).
[2] A. Černý and J. Gruska, Modular trellises, in: G. Rozenberg and A. Salomaa (eds.), The Book of L, Springer, Berlin 1985, 45-61.
[3] A. Černý and J. Gruska, Modular real-time trellis automata, Fund. Inform. 11 (3) (1986), 253-282.
[4] K. Culik II, J. Gruska and A. Salomaa, Systolic trellis automata. Part I, Internat. J. Comput. Math. 15 (1984), 195-212.
[5] K. Culik II, J. Gruska and A. Salomaa, Systolic trellis automata. Part II, ibid. 16 (1985), 3-22.
[6] K. Culik II, L. P. Hurd and S. Yu, Computation theoretic aspects of cellular automata, Physica D 45 (1990), 357-378.
[7] J. Gruska, Systolic automata--power, characterizations, nonhomogeneity, in: Proc. Math. Foundations of Computer Science, Praha, Lecture Notes in Comput. Sci. 176 Springer, Berlin 1984, 32-49.
[8] J. Gruska, Systolic architectures, systems and computations, in: T. Lepistö and A. Salomaa (eds.), Automata, Languages and Programming, Proc. ICALP, Tampere, Lecture Notes in Comput. Sci. 317, Springer, Berlin 1988, 254-270.
[9] J. Gruska, Synthesis, structure and power of systolic computations, Theoret. Comput. Sci. 71 (1988), 47-77.
[10] I. Korec, Generalized Pascal triangles, D.Sc. thesis, UK Bratislava, 1984 (in Slovak).
[12] I. Korec, Multiples of an integer in the Pascal triangle, ibid., 83-91.
[13] I. Korec, Generalized Pascal triangles, in: K. Halkowska and S. Stawski (eds.), Proc. V Universal Algebra Symposium, Turawa, Poland, May 1988, World Scientific, Singapore 1989, 198-218.
[14] I. Korec, Semilinear real-time systolic trellis automata, in: J. Csirik, J. Demetrovics and F. Gécseg (eds.), Fundamentals of Computation Theory, Proc. FCT '89, Lecture Notes in Comput. Sci. 380, Springer, Berlin 1989, 267-276.
[15] I. Korec, Pascal triangles modulo n and modular trellises, Comput. Artificial Intelligence 3 (1990), 105-113.
[16] I. Korec, Irrational speeds of configuration growths in generalized Pascal triangles, Theoret. Comput. Sci., to appear.
[17] I. Korec, The 3x+1 problem, generalized Pascal triangles and cellular automata, Math. Slovaca 42 (5) (1992), 547-563.
[18] J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23.