ArticleOriginal scientific text

Title

Superposition of functions in Sobolev spaces of fractional order. A survey

Authors 1

Affiliations

  1. Mathematische Fakultät, Friedrich-Schiller-Universität Jena, D-O-6900 Jena, Germany

Bibliography

  1. D. R. Adams and M. Frazier, BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), 241-260.
  2. J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge 1990.
  3. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-476.
  4. G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu réguliers, Diss., Univ. de Paris Sud, 1983.
  5. A. P. Calderón, Lebesgue spaces of functions and distributions, in: Partial Differential Equations, Proc. Sympos. Pure Math. 4, Amer. Math. Soc., 1961, 33-49.
  6. T. Cazenave and F. B. Weissler, The Cauchy Problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Anal. 14 (1990), 807-836.
  7. B. E. J. Dahlberg, A note on Sobolev spaces, in: Proc. Sympos. Pure Math. 35, Part I, Amer. Math. Soc., 1979, 183-185.
  8. P. Drabek and Th. Runst, On the existence of solutions of a semilinear elliptic boundary value problem with superlinear nonlinearities, Z. Anal. Anwendungen 9 (1990), 105-112.
  9. D. E. Edmunds and H. Triebel, Remarks on nonlinear elliptic equations of the type Δu+u=|u|p+f in bounded domains, J. London Math. Soc. (2) 91 (1985), 331-339.
  10. J. Franke and T. Runst, On the admissibility of function spaces of type Bp,qs and Fs_{p,q} and boundary value problems for non-linear partial differential equations, Anal. Math. 13 (1987), 3-27.
  11. L. Maligranda, Integration of locally Hölder operators, Studia Math. 78 (1984), 289-296.
  12. M. Marcus and V. J. Mizel, Complete characterization of functions which act via superposition on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187-218.
  13. J. Marschall, Pseudo-differential operators with nonregular symbols, thesis, FU Berlin, 1985.
  14. Y. Meyer, Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo (2) Suppl. 1 (1981), 1-20.
  15. S. Mizohata, Lectures on the Cauchy Problem, Tata Institute, Bombay 1965.
  16. J. Moser, A rapidly convergent iteration method and non-linear differential equations. I, Ann. Scuola Norm. Sup. Pisa 20 (2) (1966), 265-315; II, ibid. 20 (3) (1966), 499-535.
  17. L. Nirenberg, On elliptic partial differential equations, ibid. 13 (1959), 115-162.
  18. J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (35) (1970), 325-334.
  19. T. Runst, Paradifferential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), 557-573.
  20. T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), 323-346.
  21. T. Runst, Solvability of semilinear elliptic boundary value problems in function spaces, in: Surveys on Analysis, Geometry and Mathematical Physics, Teubner-Texte Math. 117, Teubner, Leipzig 1990, 198-292.
  22. T. Runst and W. Sickel, Mapping properties of T:f → |f| in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, preprint.
  23. W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces, in: Seminar Analysis of the Karl-Weierstrass-Institute 1985/86, Teubner-Texte Math. 96, Teubner, Leipzig 1987, 45-103.
  24. W. Sickel, On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czechoslovak Math. J. 39 (114) (1989), 323-347.
  25. W. Sickel, Abbildungseigenschaften von Nemytckii-Operatoren in Besov-Triebel-Lizorkin-Räumen und ausgewählte Anwendungen, manuscript.
  26. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press., Princeton 1970.
  27. R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.
  28. F. Szigeti, On Niemitzki operators in Sobolev spaces, Z. Angew. Math. Mech. 63 (5) (1983), T332.
  29. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, Amsterdam, and Deutscher Verlag Wiss., Berlin 1978.
  30. H. Triebel, Theory of Function Spaces, Akad. Verlagsges. Geest & Portig K. G., Leipzig 1983 and Birkhäuser, Basel 1983.
  31. H. Triebel, Mapping properties of non-linear operators generated by holomorphic ϕ(u) in function spaces of Besov-Sobolev-Hardy type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213.
  32. M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 131-174.
Pages:
481-497
Main language of publication
English
Published
1992
Exact and natural sciences