ArticleOriginal scientific text
Title
Superposition of functions in Sobolev spaces of fractional order. A survey
Authors 1
Affiliations
- Mathematische Fakultät, Friedrich-Schiller-Universität Jena, D-O-6900 Jena, Germany
Bibliography
- D. R. Adams and M. Frazier, BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), 241-260.
- J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge 1990.
- N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-476.
- G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu réguliers, Diss., Univ. de Paris Sud, 1983.
- A. P. Calderón, Lebesgue spaces of functions and distributions, in: Partial Differential Equations, Proc. Sympos. Pure Math. 4, Amer. Math. Soc., 1961, 33-49.
- T. Cazenave and F. B. Weissler, The Cauchy Problem for the critical nonlinear Schrödinger equation in
, Nonlinear Anal. 14 (1990), 807-836. - B. E. J. Dahlberg, A note on Sobolev spaces, in: Proc. Sympos. Pure Math. 35, Part I, Amer. Math. Soc., 1979, 183-185.
- P. Drabek and Th. Runst, On the existence of solutions of a semilinear elliptic boundary value problem with superlinear nonlinearities, Z. Anal. Anwendungen 9 (1990), 105-112.
- D. E. Edmunds and H. Triebel, Remarks on nonlinear elliptic equations of the type
in bounded domains, J. London Math. Soc. (2) 91 (1985), 331-339. - J. Franke and T. Runst, On the admissibility of function spaces of type
and and boundary value problems for non-linear partial differential equations, Anal. Math. 13 (1987), 3-27. - L. Maligranda, Integration of locally Hölder operators, Studia Math. 78 (1984), 289-296.
- M. Marcus and V. J. Mizel, Complete characterization of functions which act via superposition on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187-218.
- J. Marschall, Pseudo-differential operators with nonregular symbols, thesis, FU Berlin, 1985.
- Y. Meyer, Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo (2) Suppl. 1 (1981), 1-20.
- S. Mizohata, Lectures on the Cauchy Problem, Tata Institute, Bombay 1965.
- J. Moser, A rapidly convergent iteration method and non-linear differential equations. I, Ann. Scuola Norm. Sup. Pisa 20 (2) (1966), 265-315; II, ibid. 20 (3) (1966), 499-535.
- L. Nirenberg, On elliptic partial differential equations, ibid. 13 (1959), 115-162.
- J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (35) (1970), 325-334.
- T. Runst, Paradifferential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), 557-573.
- T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), 323-346.
- T. Runst, Solvability of semilinear elliptic boundary value problems in function spaces, in: Surveys on Analysis, Geometry and Mathematical Physics, Teubner-Texte Math. 117, Teubner, Leipzig 1990, 198-292.
- T. Runst and W. Sickel, Mapping properties of T:f → |f| in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, preprint.
- W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces, in: Seminar Analysis of the Karl-Weierstrass-Institute 1985/86, Teubner-Texte Math. 96, Teubner, Leipzig 1987, 45-103.
- W. Sickel, On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czechoslovak Math. J. 39 (114) (1989), 323-347.
- W. Sickel, Abbildungseigenschaften von Nemytckii-Operatoren in Besov-Triebel-Lizorkin-Räumen und ausgewählte Anwendungen, manuscript.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press., Princeton 1970.
- R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.
- F. Szigeti, On Niemitzki operators in Sobolev spaces, Z. Angew. Math. Mech. 63 (5) (1983), T332.
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, Amsterdam, and Deutscher Verlag Wiss., Berlin 1978.
- H. Triebel, Theory of Function Spaces, Akad. Verlagsges. Geest & Portig K. G., Leipzig 1983 and Birkhäuser, Basel 1983.
- H. Triebel, Mapping properties of non-linear operators generated by holomorphic ϕ(u) in function spaces of Besov-Sobolev-Hardy type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213.
- M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 131-174.